1.
Octahedral symmetry
–
A regular octahedron has 24 rotational symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has the set of symmetries, since it is the dual of an octahedron. Chiral and full octahedral symmetry are the point symmetries with the largest symmetry groups compatible with translational symmetry. They are among the point groups of the cubic crystal system. But as it is also the direct product S4 × S2, one can identify the elements of S4 as a ∈ [0,4. ). So e. g. the identity is represented as 0, the pairs can be seen in the six files below. Each file is denoted by the m ∈, and the position of each permutation in the file corresponds to the n ∈. A rotoreflection is a combination of rotation and reflection,7 ′ ∘4 =19 ′,7 ′ ∘22 =17 ′, The reflection 7 ′ applied on the 90° rotation 22 gives the 90° rotoreflection 17 ′. O,432, or + of order 24, is chiral octahedral symmetry or rotational octahedral symmetry. This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, Td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, O is the rotation group of the cube and the regular octahedron. Oh, *432, or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry and this group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4. C4, and is the symmetry group of the cube. It is the group for n =3. See also the isometries of the cube, with the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z =1. Ax + by + cz =1 gives a polyhedron with 48 faces, faces are 8-by-8 combined to larger faces for a = b =0 and 6-by-6 for a = b = c. The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6, representing in two orthogonal subsymmetries, D2h, and Td, D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations

2.
Tetrahedral symmetry
–
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4, chiral and full are discrete point symmetries. They are among the point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The intersection of these meet at order 2 and 3 gyration points. T,332, +, or 23, of order 12 – chiral or rotational tetrahedral symmetry, there are three orthogonal 2-fold rotation axes, like chiral dihedral symmetry D2 or 222, with in addition four 3-fold axes, centered between the three orthogonal directions. This group is isomorphic to A4, the group on 4 elements, in fact it is the group of even permutations of the four 3-fold axes. The three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. Td, *332, or 43m, of order 24 – achiral or full tetrahedral symmetry and this group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S4 axes, td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, see also the isometries of the regular tetrahedron. This group has the same axes as T, with mirror planes through two of the orthogonal directions. The 3-fold axes are now S6 axes, and there is an inversion symmetry. Th is isomorphic to T × Z2, every element of Th is either an element of T, apart from these two normal subgroups, there is also a normal subgroup D2h, of type Dih2 × Z2 = Z2 × Z2 × Z2. It is the product of the normal subgroup of T with Ci. The quotient group is the same as above, of type Z3, the three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the permutations of the body diagonals

3.
Golden ratio
–
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. The figure on the right illustrates the geometric relationship, expressed algebraically, for quantities a and b with a > b >0, a + b a = a b = def φ, where the Greek letter phi represents the golden ratio. Its value is, φ =1 +52 =1.6180339887 …, A001622 The golden ratio is also called the golden mean or golden section. Other names include extreme and mean ratio, medial section, divine proportion, divine section, golden proportion, golden cut, the golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other plant parts. The golden ratio has also used to analyze the proportions of natural objects as well as man-made systems such as financial markets. Two quantities a and b are said to be in the golden ratio φ if a + b a = a b = φ, one method for finding the value of φ is to start with the left fraction. Through simplifying the fraction and substituting in b/a = 1/φ, a + b a =1 + b a =1 +1 φ, multiplying by φ gives φ +1 = φ2 which can be rearranged to φ2 − φ −1 =0. First, the line segment A B ¯ is about doubled and then the semicircle with the radius A S ¯ around the point S is drawn, now the semicircle is drawn with the radius A B ¯ around the point B. The arising intersection point E corresponds 2 φ, next up, the perpendicular on the line segment A E ¯ from the point D will be establish. The subsequent parallel F S ¯ to the line segment C M ¯, produces, as it were and it is well recognizable, this triangle and the triangle M S C are similar to each other. The hypotenuse F S ¯ has due to the cathetuses S D ¯ =1 and D F ¯ =2 according the Pythagorean theorem, finally, the circle arc is drawn with the radius 5 around the point F. The golden ratio has been claimed to have held a fascination for at least 2,400 years. But the fascination with the Golden Ratio is not confined just to mathematicians, biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics. Ancient Greek mathematicians first studied what we now call the golden ratio because of its frequent appearance in geometry, the division of a line into extreme and mean ratio is important in the geometry of regular pentagrams and pentagons. Euclid explains a construction for cutting a line in extreme and mean ratio, throughout the Elements, several propositions and their proofs employ the golden ratio. The golden ratio is explored in Luca Paciolis book De divina proportione, since the 20th century, the golden ratio has been represented by the Greek letter φ or less commonly by τ. Timeline according to Priya Hemenway, Phidias made the Parthenon statues that seem to embody the golden ratio, plato, in his Timaeus, describes five possible regular solids, some of which are related to the golden ratio

4.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size

5.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra

6.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two

7.
Triangle
–
A triangle is a polygon with three edges and three vertices. It is one of the shapes in geometry. A triangle with vertices A, B, and C is denoted △ A B C, in Euclidean geometry any three points, when non-collinear, determine a unique triangle and a unique plane. This article is about triangles in Euclidean geometry except where otherwise noted, triangles can be classified according to the lengths of their sides, An equilateral triangle has all sides the same length. An equilateral triangle is also a polygon with all angles measuring 60°. An isosceles triangle has two sides of equal length, some mathematicians define an isosceles triangle to have exactly two equal sides, whereas others define an isosceles triangle as one with at least two equal sides. The latter definition would make all equilateral triangles isosceles triangles, the 45–45–90 right triangle, which appears in the tetrakis square tiling, is isosceles. A scalene triangle has all its sides of different lengths, equivalently, it has all angles of different measure. Hatch marks, also called tick marks, are used in diagrams of triangles, a side can be marked with a pattern of ticks, short line segments in the form of tally marks, two sides have equal lengths if they are both marked with the same pattern. In a triangle, the pattern is no more than 3 ticks. Similarly, patterns of 1,2, or 3 concentric arcs inside the angles are used to indicate equal angles, triangles can also be classified according to their internal angles, measured here in degrees. A right triangle has one of its interior angles measuring 90°, the side opposite to the right angle is the hypotenuse, the longest side of the triangle. The other two sides are called the legs or catheti of the triangle, special right triangles are right triangles with additional properties that make calculations involving them easier. One of the two most famous is the 3–4–5 right triangle, where 32 +42 =52, in this situation,3,4, and 5 are a Pythagorean triple. The other one is a triangle that has 2 angles that each measure 45 degrees. Triangles that do not have an angle measuring 90° are called oblique triangles, a triangle with all interior angles measuring less than 90° is an acute triangle or acute-angled triangle. If c is the length of the longest side, then a2 + b2 > c2, a triangle with one interior angle measuring more than 90° is an obtuse triangle or obtuse-angled triangle. If c is the length of the longest side, then a2 + b2 < c2, a triangle with an interior angle of 180° is degenerate