Conjunction introduction

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Conjunction introduction (often abbreviated simply as conjunction and also called and introduction)[1][2][3] is a valid rule of inference of propositional logic. The rule makes it possible to introduce a conjunction into a logical proof, it is the inference that if the proposition p is true, and proposition q is true, then the logical conjunction of the two propositions p and q is true. For example, if it's true that "it's raining", and it's true that "I'm inside", then it's true that "it's raining and I'm inside"; the rule can be stated:

where the rule is that wherever an instance of "" and "" appear on lines of a proof, a "" can be placed on a subsequent line.

Formal notation[edit]

The conjunction introduction rule may be written in sequent notation:

where and are propositions expressed in some formal system, and is a metalogical symbol meaning that is a syntactic consequence if and are each on lines of a proof in some logical system;

References[edit]

  1. ^ Hurley, Patrick (1991). A Concise Introduction to Logic 4th edition. Wadsworth Publishing. pp. 346–51.
  2. ^ Copi and Cohen
  3. ^ Moore and Parker