1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
2.
Order (group theory)
–
In group theory, a branch of mathematics, the term order is used in two unrelated senses, The order of a group is its cardinality, i. e. the number of elements in its set. Also, the order, sometimes period, of an element a of a group is the smallest positive integer m such that am = e, if no such m exists, a is said to have infinite order. The ordering relation of a partially or totally ordered group and this article is about the first sense of order. The order of a group G is denoted by ord or | G |, the symmetric group S3 has the following multiplication table. This group has six elements, so ord =6, by definition, the order of the identity, e, is 1. Each of s, t, and w squares to e, completing the enumeration, both u and v have order 3, for u2 = v and u3 = vu = e, and v2 = u and v3 = uv = e. The order of a group and that of an element tend to speak about the structure of the group, roughly speaking, the more complicated the factorization of the order the more complicated the group. If the order of group G is 1, then the group is called a trivial group, given an element a, ord =1 if and only if a is the identity. If every element in G is the same as its inverse, then ord =2 and consequently G is abelian since a b = −1 = b −1 a −1 = b a by Elementary group theory. The converse of this statement is not true, for example, the cyclic group Z6 of integers modulo 6 is abelian, but the number 2 has order 3,2 +2 +2 =6 ≡0. The relationship between the two concepts of order is the following, if we write ⟨ a ⟩ = for the subgroup generated by a, for any integer k, we have ak = e if and only if ord divides k. In general, the order of any subgroup of G divides the order of G, more precisely, if H is a subgroup of G, then ord / ord =, where is called the index of H in G, an integer. As an immediate consequence of the above, we see that the order of every element of a group divides the order of the group. For example, in the symmetric group shown above, where ord =6, the following partial converse is true for finite groups, if d divides the order of a group G and d is a prime number, then there exists an element of order d in G. The statement does not hold for composite orders, e. g. the Klein four-group does not have an element of order four) and this can be shown by inductive proof. The consequences of the include, the order of a group G is a power of a prime p if. If a has order, then all powers of a have infinite order as well. If a has order, we have the following formula for the order of the powers of a
3.
Coxeter group
–
In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups, however, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced as abstractions of reflection groups, and finite Coxeter groups were classified in 1935, Coxeter groups find applications in many areas of mathematics. Examples of finite Coxeter groups include the groups of regular polytopes. The condition m i j = ∞ means no relation of the form m should be imposed, the pair where W is a Coxeter group with generators S = is called a Coxeter system. Note that in general S is not uniquely determined by W, for example, the Coxeter groups of type B3 and A1 × A3 are isomorphic but the Coxeter systems are not equivalent. A number of conclusions can be drawn immediately from the above definition, the relation m i i =1 means that 1 =2 =1 for all i, as such the generators are involutions. If m i j =2, then the r i and r j commute. This follows by observing that x x = y y =1, in order to avoid redundancy among the relations, it is necessary to assume that m i j = m j i. This follows by observing that y y =1, together with m =1 implies that m = m y y = y m y = y y =1. Alternatively, k and k are elements, as y k y −1 = k y y −1 = k. The Coxeter matrix is the n × n, symmetric matrix with entries m i j, indeed, every symmetric matrix with positive integer and ∞ entries and with 1s on the diagonal such that all nondiagonal entries are greater than 1 serves to define a Coxeter group. The Coxeter matrix can be encoded by a Coxeter diagram. The vertices of the graph are labelled by generator subscripts, vertices i and j are adjacent if and only if m i j ≥3. An edge is labelled with the value of m i j whenever the value is 4 or greater, in particular, two generators commute if and only if they are not connected by an edge. Furthermore, if a Coxeter graph has two or more connected components, the group is the direct product of the groups associated to the individual components. Thus the disjoint union of Coxeter graphs yields a product of Coxeter groups. The Coxeter matrix, M i j, is related to the n × n Schläfli matrix C with entries C i j = −2 cos , but the elements are modified, being proportional to the dot product of the pairwise generators
4.
H.S.M. Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
5.
Lie algebra
–
In mathematics, a Lie algebra is a vector space together with a non-associative multiplication called Lie bracket. When an algebraic product is defined on the space, the Lie bracket is the commutator = x y − y x, Lie algebras were introduced to study the concept of infinitesimal transformations. Hermann Weyl introduced the term Lie algebra in the 1930s, in older texts, the name infinitesimal group is used. Lie algebras are related to Lie groups, which are groups that are also smooth manifolds. Any Lie group gives rise to a Lie algebra, conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to covering. This correspondence between Lie groups and Lie algebras allows one to study Lie groups in terms of Lie algebras, alternativity, =0 for all x in g. The Jacobi identity, + + =0 for all x, y, z in g, if the fields characteristic is not 2 then anticommutativity implies alternativity. It is customary to express a Lie algebra in lower-case fraktur, if a Lie algebra is associated with a Lie group, then the spelling of the Lie algebra is the same as that Lie group. For example, the Lie algebra of SU is written as s u. Elements of a Lie algebra g are said to be generators of the Lie algebra if the smallest subalgebra of g containing them is g itself. The dimension of a Lie algebra is its dimension as a space over F. The cardinality of a generating set of a Lie algebra is always less than or equal to its dimension. The Lie bracket is not associative in general, meaning that need not equal, nonetheless, much of the terminology that was developed in the theory of associative rings or associative algebras is commonly applied to Lie algebras. A subspace h ⊆ g that is closed under the Lie bracket is called a Lie subalgebra, if a subspace I ⊆ g satisfies a stronger condition that ⊆ I, then I is called an ideal in the Lie algebra g. A homomorphism between two Lie algebras is a map that is compatible with the respective Lie brackets, f, g → g ′, f =. The set of x such that =0 for all s in S forms a subalgebra called the centralizer of S. The centralizer of g itself is called the center of g, similar to centralizers, if S is a subspace, then the set of x such that is in S for all s in S forms a subalgebra called the normalizer of S. Let g be a Lie algebra and i an ideal of g, if the canonical map g → g / i splits, then g is said to be a semidirect product of i and g / i, g = g / i ⋉ i. Levis theorem says that a finite-dimensional Lie algebra is a product of its radical
6.
Coxeter diagram
–
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction, each node represents a mirror. An unlabeled branch implicitly represents order-3, each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams. Dynkin diagrams correspond to and are used to root systems. Branches of a Coxeter–Dynkin diagram are labeled with a number p. When p =2 the angle is 90° and the mirrors have no interaction, if a branch is unlabeled, it is assumed to have p =3, representing an angle of 60°. Two parallel mirrors have a branch marked with ∞, in principle, n mirrors can be represented by a complete graph in which all n /2 branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, diagrams can be labeled by their graph structure. The first forms studied by Ludwig Schläfli are the orthoschemes which have linear graphs that generate regular polytopes, plagioschemes are simplices represented by branching graphs, and cycloschemes are simplices represented by cyclic graphs. Every Coxeter diagram has a corresponding Schläfli matrix with matrix elements ai, j = aj, as a matrix of cosines, it is also called a Gramian matrix after Jørgen Pedersen Gram. All Coxeter group Schläfli matrices are symmetric because their root vectors are normalized. It is related closely to the Cartan matrix, used in the similar but directed graph Dynkin diagrams in the cases of p =2,3,4, and 6. The determinant of the Schläfli matrix, called the Schläflian, and its sign determines whether the group is finite, affine and this rule is called Schläflis Criterion. The eigenvalues of the Schläfli matrix determines whether a Coxeter group is of type, affine type. The indefinite type is further subdivided, e. g. into hyperbolic. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups and we use the following definition, A Coxeter group with connected diagram is hyperbolic if it is neither of finite nor affine type, but every proper connected subdiagram is of finite or affine type. A hyperbolic Coxeter group is compact if all subgroups are finite, Finite and affine groups are also called elliptical and parabolic respectively. Hyperbolic groups are also called Lannér, after F. Lannér who enumerated the compact groups in 1950
7.
Dynkin diagram
–
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. The multiple edges are, within certain constraints, directed, the main interest in Dynkin diagrams are as a means to classify semisimple Lie algebras over algebraically closed fields. This gives rise to Weyl groups, i. e. to many finite reflection groups, Dynkin diagrams may also arise in other contexts. The term Dynkin diagram can be ambiguous, in this article, Dynkin diagram means directed Dynkin diagram, and undirected Dynkin diagrams will be explicitly so named. The fundamental interest in Dynkin diagrams is that they classify semisimple Lie algebras over algebraically closed fields, one classifies such Lie algebras via their root system, which can be represented by a Dynkin diagram. One then classifies Dynkin diagrams according to the constraints they must satisfy, the central classification is that a simple Lie algebra has a root system, to which is associated an Dynkin diagram, all three of these may be referred to as Bn, for instance. The unoriented Dynkin diagram is a form of Coxeter diagram, and corresponds to the Weyl group, thus Bn may refer to the unoriented diagram, the Weyl group, or the abstract Coxeter group. Note that while the Weyl group is isomorphic to the Coxeter group. Beware also that while Dynkin diagram notation is standardized, Coxeter diagram and group notation is varied and sometimes agrees with Dynkin diagram notation, lastly, sometimes associated objects are referred to by the same notation, though this cannot always be done regularly. Examples include, The root lattice generated by the root system and this is naturally defined, but not one-to-one – for example, A2 and G2 both generate the hexagonal lattice. An associated polytope – for example Gosset 421 polytope may be referred to as the E8 polytope, as its vertices are derived from the E8 root system, an associated quadratic form or manifold – for example, the E8 manifold has intersection form given by the E8 lattice. These latter notations are used for objects associated with exceptional diagrams – objects associated to the regular diagrams instead have traditional names. However, n does not equal the dimension of the module of the Lie algebra – the index on the Dynkin diagram should not be confused with the index on the Lie algebra. For example, B4 corresponds to s o 2 ⋅4 +1 = s o 9, which acts on 9-dimensional space. The simply laced Dynkin diagrams, those with no multiple edges classify many further mathematical objects, for example, the symbol A2 may refer to, The Dynkin diagram with 2 connected nodes, which may also be interpreted as a Coxeter diagram. The root system with 2 simple roots at a 2 π /3 angle, the Lie algebra s l 2 +1 = s l 3 of rank 2. The Weyl group of symmetries of the roots, isomorphic to the symmetric group S3, the abstract Coxeter group, presented by generators and relations, ⟨ r 1, r 2 ∣2 =2 =3 =1 ⟩. Dynkin diagrams must satisfy certain constraints, these are essentially those satisfied by finite Coxeter–Dynkin diagrams, Dynkin diagrams are closely related to Coxeter diagrams of finite Coxeter groups, and the terminology is often conflated
8.
Primitive root of unity
–
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that gives 1 when raised to some positive integer power n. Roots of unity are used in branches of mathematics, and are especially important in number theory, the theory of group characters. In field theory and ring theory the notion of root of unity also applies to any ring with an identity element. Any algebraically closed field has exactly n nth roots of unity if n is not divisible by the characteristic of the field, an nth root of unity, where n is a positive integer, is a number z satisfying the equation z n =1. Without further specification, the roots of unity are complex numbers, however the defining equation of roots of unity is meaningful over any field F, and this allows considering roots of unity in F. Whichever is the field F, the roots of unity in F are either numbers, if the characteristic of F is 0, or, otherwise. Conversely, every element in a finite field is a root of unity in that field. See Root of unity modulo n and Finite field for further details, an nth root of unity is primitive if it is not a kth root of unity for some smaller k, z k ≠1. Every nth root of unity z is a primitive ath root of unity for some a where 1 ≤ a ≤ n. In fact, if z1 =1 then z is a primitive first root of unity, otherwise if z2 =1 then z is a second root of unity. And, as z is a root of unity, one finds a first a such that za =1. If z is an nth root of unity and a ≡ b then za = zb, Therefore, given a power za of z, it can be assumed that 1 ≤ a ≤ n. Any integer power of an nth root of unity is also an nth root of unity, n = z k n = k =1 k =1. In particular, the reciprocal of an nth root of unity is its complex conjugate, let z be a primitive nth root of unity. Zn−1, zn = z0 =1 are all distinct, assume the contrary, that za = zb where 1 ≤ a < b ≤ n. But 0 < b − a < n, which contradicts z being primitive. Since an nth-degree polynomial equation can only have n distinct roots, from the preceding, it follows that if z is a primitive nth root of unity, z a = z b ⟺ a ≡ b. If z is not primitive there is only one implication, a ≡ b ⟹ z a = z b
9.
Symmetric group
–
Since there are n. possible permutation operations that can be performed on a tuple composed of n symbols, it follows that the order of the symmetric group Sn is n. For the remainder of this article, symmetric group will mean a group on a finite set. The symmetric group is important to diverse areas of such as Galois theory, invariant theory, the representation theory of Lie groups. Cayleys theorem states that every group G is isomorphic to a subgroup of the group on G. The symmetric group on a finite set X is the group elements are all bijective functions from X to X. For finite sets, permutations and bijective functions refer to the same operation, the symmetric group of degree n is the symmetric group on the set X =. The symmetric group on a set X is denoted in various ways including SX,
10.
Dihedral group
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
11.
Orthogonal projection
–
In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that P2 = P. That is, whenever P is applied twice to any value, though abstract, this definition of projection formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on an object by examining the effect of the projection on points in the object. For example, the function maps the point in three-dimensional space R3 to the point is an orthogonal projection onto the x–y plane. This function is represented by the matrix P =, the action of this matrix on an arbitrary vector is P =. To see that P is indeed a projection, i. e. P = P2, a simple example of a non-orthogonal projection is P =. Via matrix multiplication, one sees that P2 = = = P. proving that P is indeed a projection, the projection P is orthogonal if and only if α =0. Let W be a finite dimensional space and P be a projection on W. Suppose the subspaces U and V are the range and kernel of P respectively, then P has the following properties, By definition, P is idempotent. P is the identity operator I on U ∀ x ∈ U, P x = x and we have a direct sum W = U ⊕ V. Every vector x ∈ W may be decomposed uniquely as x = u + v with u = P x and v = x − P x = x, the range and kernel of a projection are complementary, as are P and Q = I − P. The operator Q is also a projection and the range and kernel of P become the kernel and range of Q and we say P is a projection along V onto U and Q is a projection along U onto V. In infinite dimensional spaces, the spectrum of a projection is contained in as −1 =1 λ I +1 λ P. Only 0 or 1 can be an eigenvalue of a projection, the corresponding eigenspaces are the kernel and range of the projection. Decomposition of a space into direct sums is not unique in general. Therefore, given a subspace V, there may be many projections whose range is V, if a projection is nontrivial it has minimal polynomial x 2 − x = x, which factors into distinct roots, and thus P is diagonalizable. The product of projections is not, in general, a projection, if projections commute, then their product is a projection. When the vector space W has a product and is complete the concept of orthogonality can be used
12.
Petrie polygon
–
In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon such that every consecutive sides belong to one of the facets. The Petrie polygon of a polygon is the regular polygon itself. For every regular polytope there exists an orthogonal projection onto a plane such that one Petrie polygon becomes a regular polygon with the remainder of the interior to it. The plane in question is the Coxeter plane of the group of the polygon. These polygons and projected graphs are useful in visualizing symmetric structure of the regular polytopes. John Flinders Petrie was the son of Egyptologist Flinders Petrie. He was born in 1907 and as a schoolboy showed remarkable promise of mathematical ability, in periods of intense concentration he could answer questions about complicated four-dimensional objects by visualizing them. He first noted the importance of the skew polygons which appear on the surface of regular polyhedra. When my incredulity had begun to subside, he described them to me, one consisting of squares, six at each vertex, in 1938 Petrie collaborated with Coxeter, Patrick du Val, and H. T. Flather to produce The Fifty-Nine Icosahedra for publication, realizing the geometric facility of the skew polygons used by Petrie, Coxeter named them after his friend when he wrote Regular Polytopes. In 1972, a few months after his retirement, Petrie was killed by a car attempting to cross a motorway near his home in Surrey. The idea of Petrie polygons was later extended to semiregular polytopes, the Petrie polygon of the regular polyhedron has h sides, where h+2=24/. The regular duals, and, are contained within the same projected Petrie polygon, three of the Kepler–Poinsot polyhedra have hexagonal, and decagrammic, petrie polygons. The Petrie polygon projections are most useful for visualization of polytopes of dimension four and this table represents Petrie polygon projections of 3 regular families, and the exceptional Lie group En which generate semiregular and uniform polytopes for dimensions 4 to 8. Coxeter, H. S. M. Regular Polytopes, 3rd ed, Section 4.3 Flags and Orthoschemes, Section 11.3 Petrie polygons Ball, W. W. R. and H. S. M. Coxeter Mathematical Recreations and Essays, 13th ed. The Beauty of Geometry, Twelve Essays, Dover Publications LCCN 99-35678 Peter McMullen, Egon Schulte Abstract Regular Polytopes, ISBN 0-521-81496-0 Steinberg, Robert, ON THE NUMBER OF SIDES OF A PETRIE POLYGON Weisstein, Eric W. Petrie polygon. Weisstein, Eric W. Cross polytope graphs, Weisstein, Eric W. Gosset graph 3_21
13.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
14.
Regular polyhedron
–
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive, in classical contexts, many different equivalent definitions are used, a common one is that faces are congruent regular polygons which are assembled in the same way around each vertex. A regular polyhedron is identified by its Schläfli symbol of the form, there are 5 finite convex regular polyhedra, known as the Platonic solids. These are the, tetrahedron, cube, octahedron, dodecahedron and icosahedron, there are also four regular star polyhedra, making nine regular polyhedra in all. All the dihedral angles of the polyhedron are equal All the vertex figures of the polyhedron are regular polygons, All the solid angles of the polyhedron are congruent. A regular polyhedron has all of three related spheres which share its centre, An insphere, tangent to all faces, an intersphere or midsphere, tangent to all edges. A circumsphere, tangent to all vertices, the regular polyhedra are the most symmetrical of all the polyhedra. They lie in just three symmetry groups, which are named after them, Tetrahedral Octahedral Icosahedral Any shapes with icosahedral or octahedral symmetry will also contain tetrahedral symmetry, the five Platonic solids have an Euler characteristic of 2. Some of the stars have a different value. The sum of the distances from any point in the interior of a polyhedron to the sides is independent of the location of the point. However, the converse does not hold, not even for tetrahedra, in a dual pair of polyhedra, the vertices of one polyhedron correspond to the faces of the other, and vice versa. The regular polyhedra show this duality as follows, The tetrahedron is self-dual, the cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other, the small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other, the Schläfli symbol of the dual is just the original written backwards, for example the dual of is. See also Regular polytope, History of discovery, stones carved in shapes resembling clusters of spheres or knobs have been found in Scotland and may be as much as 4,000 years old. Some of these stones show not only the symmetries of the five Platonic solids, examples of these stones are on display in the John Evans room of the Ashmolean Museum at Oxford University. Why these objects were made, or how their creators gained the inspiration for them, is a mystery, the earliest known written records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, euclids reference to Plato led to their common description as the Platonic solids
15.
Rotoinversion
–
In 3D, equivalently it is the combination of a rotation and an inversion in a point on the axis. Therefore it is called a rotoinversion or rotary inversion. A three-dimensional symmetry that has one fixed point is necessarily an improper rotation. In both cases the operations commute, rotoreflection and rotoinversion are the same if they differ in angle of rotation by 180°, and the point of inversion is in the plane of reflection. An improper rotation of an object produces a rotation of its mirror image. The axis is called the rotation-reflection axis and this is called an n-fold improper rotation if the angle of rotation is 360°/n. The notation Sn denotes the group generated by an n-fold improper rotation. The notation n ¯ is used for n-fold rotoinversion, i. e. rotation by an angle of rotation of 360°/n with inversion, the Coxeter notation for S2n is, and orbifold notation is n×, order 2n. The direct subgroup, index 2, is Cn, +, order n, S2n for odd n contain inversion, with S2 = Ci is the group generated by inversion. S2n contain indirect isometries but not inversion for even n, in general, if odd p is a divisor of n, then S2n/p is a subgroup of S2n. For example S4 is a subgroup of S12, in a wider sense, an improper rotation may be defined as any indirect isometry, i. e. an element of E\E+, thus it can also be a pure reflection in a plane, or have a glide plane. An indirect isometry is a transformation with an orthogonal matrix that has a determinant of −1. A proper rotation is an ordinary rotation. In the wider sense, a rotation is defined as a direct isometry, i. e. an element of E+, it can also be the identity. A direct isometry is a transformation with an orthogonal matrix that has a determinant of 1. In either the narrower or the senses, the composition of two improper rotations is a proper rotation, and the composition of an improper and a proper rotation is an improper rotation
16.
Dihedral symmetry
–
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of groups, and they play an important role in group theory, geometry. The notation for the group of order n differs in geometry. In geometry, Dn or Dihn refers to the symmetries of the n-gon, in abstract algebra, Dn refers to the dihedral group of order n. The geometric convention is used in this article, a regular polygon with n sides has 2 n different symmetries, n rotational symmetries and n reflection symmetries. Usually, we take n ≥3 here. The associated rotations and reflections make up the dihedral group D n, if n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is even, there are n/2 axes of symmetry connecting the midpoints of opposite sides, in either case, there are n axes of symmetry and 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes, as with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity, r1 and r2 denote counterclockwise rotations by 120° and 240° respectively, for example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°. The order of elements denoting the composition is right to left, the composition operation is not commutative. In all cases, addition and subtraction of subscripts are to be performed using modular arithmetic with modulus n, if we center the regular polygon at the origin, then elements of the dihedral group act as linear transformations of the plane. This lets us represent elements of Dn as matrices, with composition being matrix multiplication and this is an example of a group representation. For example, the elements of the group D4 can be represented by the eight matrices. In general, the matrices for elements of Dn have the following form, rk is a rotation matrix, expressing a counterclockwise rotation through an angle of 2πk/n. Sk is a reflection across a line makes an angle of πk/n with the x-axis. Further equivalent definitions of Dn are, D1 is isomorphic to Z2, D2 is isomorphic to K4, the Klein four-group. D1 and D2 are exceptional in that, D1 and D2 are the only abelian dihedral groups, Dn is a subgroup of the symmetric group Sn for n ≥3
17.
Tetrahedral symmetry
–
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4, chiral and full are discrete point symmetries. They are among the point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The intersection of these meet at order 2 and 3 gyration points. T,332, +, or 23, of order 12 – chiral or rotational tetrahedral symmetry, there are three orthogonal 2-fold rotation axes, like chiral dihedral symmetry D2 or 222, with in addition four 3-fold axes, centered between the three orthogonal directions. This group is isomorphic to A4, the group on 4 elements, in fact it is the group of even permutations of the four 3-fold axes. The three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. Td, *332, or 43m, of order 24 – achiral or full tetrahedral symmetry and this group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S4 axes, td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, see also the isometries of the regular tetrahedron. This group has the same axes as T, with mirror planes through two of the orthogonal directions. The 3-fold axes are now S6 axes, and there is an inversion symmetry. Th is isomorphic to T × Z2, every element of Th is either an element of T, apart from these two normal subgroups, there is also a normal subgroup D2h, of type Dih2 × Z2 = Z2 × Z2 × Z2. It is the product of the normal subgroup of T with Ci. The quotient group is the same as above, of type Z3, the three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the permutations of the body diagonals
18.
Octahedral symmetry
–
A regular octahedron has 24 rotational symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has the set of symmetries, since it is the dual of an octahedron. Chiral and full octahedral symmetry are the point symmetries with the largest symmetry groups compatible with translational symmetry. They are among the point groups of the cubic crystal system. But as it is also the direct product S4 × S2, one can identify the elements of S4 as a ∈ [0,4. ). So e. g. the identity is represented as 0, the pairs can be seen in the six files below. Each file is denoted by the m ∈, and the position of each permutation in the file corresponds to the n ∈. A rotoreflection is a combination of rotation and reflection,7 ′ ∘4 =19 ′,7 ′ ∘22 =17 ′, The reflection 7 ′ applied on the 90° rotation 22 gives the 90° rotoreflection 17 ′. O,432, or + of order 24, is chiral octahedral symmetry or rotational octahedral symmetry. This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, Td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, O is the rotation group of the cube and the regular octahedron. Oh, *432, or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry and this group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4. C4, and is the symmetry group of the cube. It is the group for n =3. See also the isometries of the cube, with the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z =1. Ax + by + cz =1 gives a polyhedron with 48 faces, faces are 8-by-8 combined to larger faces for a = b =0 and 6-by-6 for a = b = c. The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6, representing in two orthogonal subsymmetries, D2h, and Td, D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations
19.
Icosahedral symmetry
–
A regular icosahedron has 60 rotational symmetries, and a symmetry order of 120 including transformations that combine a reflection and a rotation. A regular dodecahedron has the set of symmetries, since it is the dual of the icosahedron. The set of orientation-preserving symmetries forms a group referred to as A5, the latter group is also known as the Coxeter group H3, and is also represented by Coxeter notation, and Coxeter diagram. Icosahedral symmetry is not compatible with translational symmetry, so there are no associated crystallographic point groups or space groups. Presentations corresponding to the above are, I, ⟨ s, t ∣ s 2, t 3,5 ⟩ I h, ⟨ s, t ∣ s 3 −2, t 5 −2 ⟩ and these correspond to the icosahedral groups being the triangle groups. The first presentation was given by William Rowan Hamilton in 1856, note that other presentations are possible, for instance as an alternating group. The icosahedral rotation group I is of order 60, the group I is isomorphic to A5, the alternating group of even permutations of five objects. This isomorphism can be realized by I acting on various compounds, notably the compound of five cubes, the group contains 5 versions of Th with 20 versions of D3, and 6 versions of D5. The full icosahedral group Ih has order 120 and it has I as normal subgroup of index 2. The group Ih is isomorphic to I × Z2, or A5 × Z2, with the inversion in the corresponding to element. Ih acts on the compound of five cubes and the compound of five octahedra and it acts on the compound of ten tetrahedra, I acts on the two chiral halves, and −1 interchanges the two halves. Notably, it does not act as S5, and these groups are not isomorphic, the group contains 10 versions of D3d and 6 versions of D5d. I is also isomorphic to PSL2, but Ih is not isomorphic to SL2, all of these classes of subgroups are conjugate, and admit geometric interpretations. Note that the stabilizer of a vertex/edge/face/polyhedron and its opposite are equal, stabilizers of an opposite pair of vertices can be interpreted as stabilizers of the axis they generate. Stabilizers of a pair of edges in Ih give Z2 × Z2 × Z2, there are 5 of these, stabilizers of an opposite pair of faces can be interpreted as stabilizers of the anti-prism they generate. g. Flattening selected subsets of faces to combine each subset into one face, or replacing each face by multiple faces, in aluminum, the icosahedral structure was discovered experimentally three years after this by Dan Shechtman, which earned him the Nobel Prize in 2011. Icosahedral symmetry is equivalently the projective linear group PSL, and is the symmetry group of the modular curve X. The modular curve X is geometrically a dodecahedron with a cusp at the center of each polygonal face, similar geometries occur for PSL and more general groups for other modular curves
20.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
21.
Cube
–
Beryllium copper, also known as copper beryllium, beryllium bronze and spring copper, is a copper alloy with 0. 5—3% beryllium and sometimes other elements. Beryllium copper combines high strength with non-magnetic and non-sparking qualities and it has excellent metalworking, forming and machining properties. It has many specialized applications in tools for hazardous environments, musical instruments, precision measurement devices, bullets, beryllium alloys present a toxic inhalation hazard during manufacture. Beryllium copper is a ductile, weldable, and machinable alloy and it is resistant to non-oxidizing acids, to plastic decomposition products, to abrasive wear, and to galling. It can be heat-treated for increased strength, durability, and electrical conductivity, beryllium copper attains the greatest strength of any copper-based alloy. In solid form and as finished objects, beryllium copper presents no known health hazard, however, inhalation of dust, mist, or fume containing beryllium can cause the serious lung condition, chronic beryllium disease. That disease affects primarily the lungs, restricting the exchange of oxygen between the lungs and the bloodstream, the International Agency for Research on Cancer lists beryllium as a Group 1 Human Carcinogen. The National Toxicology Program also lists beryllium as a carcinogen, beryllium copper is a non-ferrous alloy used in springs, spring wire, load cells, and other parts that must retain their shape under repeated stress and strain. It has high electrical conductivity, and is used in low-current contacts for batteries, beryllium copper is non-sparking but physically tough and nonmagnetic, fulfilling the requirements of ATEX directive for Zones 0,1, and 2. Beryllium copper screwdrivers, pliers, wrenches, cold chisels, knives, and hammers are available for environments with explosive hazards, such oil rigs, coal mines, an alternative metal sometimes used for non-sparking tools is aluminium bronze. Compared to steel tools, beryllium copper tools are more expensive, not as strong, and less durable, beryllium copper is frequently used for percussion instruments for its consistent tone and resonance, especially tambourines and triangles. Beryllium copper has been used for armour piercing bullets, though usage is unusual because bullets made from steel alloys are much less expensive and have similar properties. Beryllium copper is used for measurement-while-drilling tools in the drilling industry. A non-magnetic alloy is required, as magnetometers are used for field-strength data received from the tool, beryllium copper gaskets are used to create an RF-tight, electronic seal on doors used with EMC testing and anechoic chambers. For a time, beryllium copper was used in the manufacture of clubs, particularly wedges. Though some golfers prefer the feel of BeCu club heads, regulatory issues, kiefer Plating of Elkhart, Indiana built some beryllium-copper trumpet bells for the Schilke Music Co. of Chicago. These light-weight bells produce a sound preferred by some musicians, beryllium copper wire is produced in many forms, round, square, flat and shaped, in coils, on spools and in straight lengths. Beryllium copper valve seats and guides are used in high performance engines with coated titanium valves
22.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
23.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does
24.
Icosahedron
–
In geometry, an icosahedron is a polyhedron with 20 faces. The name comes from Greek εἴκοσι, meaning twenty, and ἕδρα, the plural can be either icosahedra or icosahedrons. There are many kinds of icosahedra, with some being more symmetrical than others, the best known is the Platonic, convex regular icosahedron. There are two objects, one convex and one concave, that can both be called regular icosahedra, each has 30 edges and 20 equilateral triangle faces with five meeting at each of its twelve vertices. The term regular icosahedron generally refers to the variety, while the nonconvex form is called a great icosahedron. Its dual polyhedron is the dodecahedron having three regular pentagonal faces around each vertex. The great icosahedron is one of the four regular star Kepler-Poinsot polyhedra, like the convex form, it also has 20 equilateral triangle faces, but its vertex figure is a pentagram rather than a pentagon, leading to geometrically intersecting faces. The intersections of the triangles do not represent new edges and its dual polyhedron is the great stellated dodecahedron, having three regular star pentagonal faces around each vertex. Stellation is the process of extending the faces or edges of a polyhedron until they meet to form a new polyhedron and it is done symmetrically so that the resulting figure retains the overall symmetry of the parent figure. In their book The Fifty-Nine Icosahedra, Coxeter et al. enumerated 58 such stellations of the regular icosahedron, of these, many have a single face in each of the 20 face planes and so are also icosahedra. The great icosahedron is among them, other stellations have more than one face in each plane or form compounds of simpler polyhedra. These are not strictly icosahedra, although they are referred to as such. A regular icosahedron can be distorted or marked up as a lower symmetry, and is called a snub octahedron, snub tetratetrahedron, snub tetrahedron. This can be seen as a truncated octahedron. If all the triangles are equilateral, the symmetry can also be distinguished by colouring the 8 and 12 triangle sets differently, pyritohedral symmetry has the symbol, with order 24. Tetrahedral symmetry has the symbol, +, with order 12 and these lower symmetries allow geometric distortions from 20 equilateral triangular faces, instead having 8 equilateral triangles and 12 congruent isosceles triangles. These symmetries offer Coxeter diagrams, and respectively, each representing the lower symmetry to the regular icosahedron, the coordinates of the 12 vertices can be defined by the vectors defined by all the possible cyclic permutations and sign-flips of coordinates of the form. These coordinates represent the truncated octahedron with alternated vertices deleted and this construction is called a snub tetrahedron in its regular icosahedron form, generated by the same operations carried out starting with the vector, where ϕ is the golden ratio
25.
List of spherical symmetry groups
–
Spherical symmetry groups are also called point groups in three dimensions, however, this article is limited to the finite symmetries. There are five fundamental symmetry classes which have triangular fundamental domains, dihedral, cyclic, tetrahedral, octahedral and this article lists the groups by Schoenflies notation, Coxeter notation, orbifold notation, and order. John Conway uses a variation of the Schoenflies notation, based on the groups quaternion algebraic structure, the group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, ±, prefix, which implies a central inversion. The crystallography groups,32 in total, are a subset with element orders 2,3,4 and 6, there are four involutional groups, no symmetry, reflection symmetry, 2-fold rotational symmetry, and central point symmetry. There are four infinite cyclic symmetry families, with n=2 or higher, there are three infinite dihedral symmetry families, with n as 2 or higher. There are three types of symmetry, tetrahedral symmetry, octahedral symmetry, and icosahedral symmetry, named after the triangle-faced regular polyhedra with these symmetries. Crystallographic point group Triangle group List of planar symmetry groups Point groups in two dimensions Peter R. Cromwell, Polyhedra, Appendix I Sands, Donald E, mineola, New York, Dover Publications, Inc. p.165. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, Geometries and Transformations, Chapter 11, Finite symmetry groups Finite spherical symmetry groups Weisstein, Eric W. Schoenflies symbol. Weisstein, Eric W. Crystallographic point groups, simplest Canonical Polyhedra of Each Symmetry Type, by David I
26.
Convex regular polychoron
–
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the analogs of the regular polyhedra in three dimensions and the regular polygons in two dimensions. Regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century, Schläfli discovered that there are precisely six such figures. Schläfli also found four of the regular star 4-polytopes and he skipped the remaining six because he would not allow forms that failed the Euler characteristic on cells or vertex figures. That excludes cells and vertex figures as, and, the six convex and ten star polytopes described are the only solutions to these constraints. There are four nonconvex Schläfli symbols that have cells and vertex figures, and pass the dihedral test. The regular convex 4-polytopes are the analogs of the Platonic solids in three dimensions and the convex regular polygons in two dimensions. Five of them may be thought of as close analogs of the Platonic solids, There is one additional figure, the 24-cell, which has no close three-dimensional equivalent. Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and these are fitted together along their respective faces in a regular fashion. The following tables lists some properties of the six convex regular 4-polytopes, the symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group, John Conway advocates the names simplex, orthoplex, tesseract, octaplex or polyoctahedron, dodecaplex or polydodecahedron, and tetraplex or polytetrahedron. The Euler characteristic for all 4-polytopes is zero, we have the 4-dimensional analog of Eulers polyhedral formula, the topology of any given 4-polytope is defined by its Betti numbers and torsion coefficients. The following table shows some 2-dimensional projections of these 4-polytopes, various other visualizations can be found in the external links below. The Coxeter-Dynkin diagram graphs are given below the Schläfli symbol. The Schläfli–Hess 4-polytopes are the set of 10 regular self-intersecting star polychora. They are named in honor of their discoverers, Ludwig Schläfli, each is represented by a Schläfli symbol in which one of the numbers is 5/2. They are thus analogous to the regular nonconvex Kepler–Poinsot polyhedra and their names given here were given by John Conway, extending Cayleys names for the Kepler–Poinsot polyhedra, along with stellated and great, he adds a grand modifier
27.
Double rotation
–
In mathematics, the group of rotations about a fixed point in four-dimensional Euclidean space is denoted SO. The name comes from the fact that it is the orthogonal group of order 4. In this article rotation means rotational displacement, for the sake of uniqueness rotation angles are assumed to be in the segment except where mentioned or clearly implied by the context otherwise. A fixed plane is a plane for which every vector in the plane is unchanged after the rotation, an invariant plane is a plane for which every vector in the plane, although it may be affected by the rotation, remains in the plane after the rotation. Four-dimensional rotations are of two types, simple rotations and double rotations, a simple rotation R about a rotation centre O leaves an entire plane A through O fixed. Every plane B that is orthogonal to A intersects A in a certain point P. Each such point P is the centre of the 2D rotation induced by R in B, all these 2D rotations have the same rotation angle α. Half-lines from O in the axis-plane A are not displaced, half-lines from O orthogonal to A are displaced through α, all other half-lines are displaced through an angle < α. For each rotation R of 4-space, there is at least one pair of orthogonal 2-planes A and B each of which are invariant, hence R operating on either of these planes produces an ordinary rotation of that plane. For almost all R, the rotation angles α in plane A and β in plane B — both assumed to be nonzero — are different, the unequal rotation angles α and β satisfying -π < α, β < π are almost* uniquely determined by R. Assuming that 4-space is oriented, then the orientations of the 2-planes A and B can be consistent with this orientation in two ways. If the rotation angles are unequal, R is sometimes termed a double rotation, *Assuming that 4-space is oriented, then an orientation for each of the 2-planes A and B can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one choice of orientations of A and B are. If the rotation angles of a rotation are equal then there are infinitely many invariant planes instead of just two, and all half-lines from O are displaced through the same angle. Such rotations are called isoclinic or equiangular rotations, or Clifford displacements, beware, not all planes through O are invariant under isoclinic rotations, only planes that are spanned by a half-line and the corresponding displaced half-line are invariant. Assuming that an orientation has been chosen for 4-dimensional space. Now assume that only the rotation angle α is specified, then there are in general four isoclinic rotations in planes OUX and OYZ with rotation angle α, depending on the rotation senses in OUX and OYZ. We make the convention that the senses from OU to OX
28.
John H. Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers
29.
5-cell
–
In geometry, the 5-cell is a four-dimensional object bounded by 5 tetrahedral cells. It is also known as a C5, pentachoron, pentatope, pentahedroid and it is a 4-simplex, the simplest possible convex regular 4-polytope, and is analogous to the tetrahedron in three dimensions and the triangle in two dimensions. The pentachoron is a four dimensional pyramid with a tetrahedral base, the regular 5-cell is bounded by regular tetrahedra, and is one of the six regular convex 4-polytopes, represented by Schläfli symbol. Pentachoron 4-simplex Pentatope Pentahedroid Pen Hyperpyramid, tetrahedral pyramid The 5-cell is self-dual and its maximal intersection with 3-dimensional space is the triangular prism. Its dihedral angle is cos−1, or approximately 75. 52°, the 5-cell can be constructed from a tetrahedron by adding a 5th vertex such that it is equidistant from all the other vertices of the tetrahedron. The simplest set of coordinates is, with edge length 2√2, a 5-cell can be constructed as a Boerdijk–Coxeter helix of five chained tetrahedra, folded into a 4-dimensional ring. The 10 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex, the purple edges represent the Petrie polygon of the 5-cell. The A4 Coxeter plane projects the 5-cell into a regular pentagon, the four sides of the pyramid are made of tetrahedron cells. Many uniform 5-polytopes have tetrahedral pyramid vertex figures, Other uniform 5-polytopes have irregular 5-cell vertex figures, the symmetry of a vertex figure of a uniform polytope is represented by removing the ringed nodes of the Coxeter diagram. The compound of two 5-cells in dual configurations can be seen in this A5 Coxeter plane projection, with a red and this compound has symmetry, order 240. The intersection of these two 5-cells is a uniform birectified 5-cell, the pentachoron is the simplest of 9 uniform polychora constructed from the Coxeter group. It is in the sequence of regular polychora, the tesseract, 120-cell, of Euclidean 4-space, all of these have a tetrahedral vertex figure. It is similar to three regular polychora, the tesseract, 600-cell of Euclidean 4-space, and the order-6 tetrahedral honeycomb of hyperbolic space, all of these have a tetrahedral cell. T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D
30.
16-cell
–
In four-dimensional geometry, a 16-cell is a regular convex 4-polytope. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century and it is also called C16, hexadecachoron, or hexdecahedroid. It is a part of an family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the tesseract, conways name for a cross-polytope is orthoplex, for orthant complex. The 16-cell has 16 cells as the tesseract has 16 vertices and it is bounded by 16 cells, all of which are regular tetrahedra. It has 32 triangular faces,24 edges, and 8 vertices, the 24 edges bound 6 squares lying in the 6 coordinate planes. The eight vertices of the 16-cell are, all vertices are connected by edges except opposite pairs. The Schläfli symbol of the 16-cell is and its vertex figure is a regular octahedron. There are 8 tetrahedra,12 triangles, and 6 edges meeting at every vertex and its edge figure is a square. There are 4 tetrahedra and 4 triangles meeting at every edge, the 16-cell can be decomposed into two similar disjoint circular chains of eight tetrahedrons each, four edges long. Each chain, when stretched out straight, forms a Boerdijk–Coxeter helix and this decomposition can be seen in a 4-4 duoantiprism construction of the 16-cell, or, Schläfli symbol ⨂ or ss, symmetry, order 64. The 16-cell can be dissected into two octahedral pyramids, which share a new octahedron base through the 16-cell center, one can tessellate 4-dimensional Euclidean space by regular 16-cells. This is called the 16-cell honeycomb and has Schläfli symbol, hence, the 16-cell has a dihedral angle of 120°. The dual tessellation, 24-cell honeycomb, is made of by regular 24-cells, together with the tesseractic honeycomb, these are the only three regular tessellations of R4. Each 16-cell has 16 neighbors with which it shares a tetrahedron,24 neighbors with which it only an edge. Twenty-four 16-cells meet at any vertex in this tessellation. A 16-cell can constructed from two Boerdijk–Coxeter helixes of eight chained tetrahedra, each folded into a 4-dimensional ring, the 16 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex. The purple edges represent the Petrie polygon of the 16-cell, the cell-first parallel projection of the 16-cell into 3-space has a cubical envelope
31.
Tesseract
–
In geometry, the tesseract is the four-dimensional analog of the cube, the tesseract is to the cube as the cube is to the square. Just as the surface of the consists of six square faces. The tesseract is one of the six convex regular 4-polytopes, the tesseract is also called an 8-cell, C8, octachoron, octahedroid, cubic prism, and tetracube. It is the four-dimensional hypercube, or 4-cube as a part of the family of hypercubes or measure polytopes. In this publication, as well as some of Hintons later work, the tesseract can be constructed in a number of ways. As a regular polytope with three cubes folded together around every edge, it has Schläfli symbol with hyperoctahedral symmetry of order 384, constructed as a 4D hyperprism made of two parallel cubes, it can be named as a composite Schläfli symbol ×, with symmetry order 96. As a 4-4 duoprism, a Cartesian product of two squares, it can be named by a composite Schläfli symbol ×, with symmetry order 64, as an orthotope it can be represented by composite Schläfli symbol × × × or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the dual polytope of the tesseract is called the hexadecachoron, or 16-cell, with Schläfli symbol. The standard tesseract in Euclidean 4-space is given as the hull of the points. That is, it consists of the points, A tesseract is bounded by eight hyperplanes, each pair of non-parallel hyperplanes intersects to form 24 square faces in a tesseract. Three cubes and three squares intersect at each edge, there are four cubes, six squares, and four edges meeting at every vertex. All in all, it consists of 8 cubes,24 squares,32 edges, the construction of a hypercube can be imagined the following way, 1-dimensional, Two points A and B can be connected to a line, giving a new line segment AB. 2-dimensional, Two parallel line segments AB and CD can be connected to become a square, 3-dimensional, Two parallel squares ABCD and EFGH can be connected to become a cube, with the corners marked as ABCDEFGH. 4-dimensional, Two parallel cubes ABCDEFGH and IJKLMNOP can be connected to become a hypercube and it is possible to project tesseracts into three- or two-dimensional spaces, as projecting a cube is possible on a two-dimensional space. Projections on the 2D-plane become more instructive by rearranging the positions of the projected vertices, the scheme is similar to the construction of a cube from two squares, juxtapose two copies of the lower-dimensional cube and connect the corresponding vertices. Each edge of a tesseract is of the same length, the regular complex polytope 42, in C2 has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 42 has 16 vertices, and 8 4-edges and its symmetry is 42, order 32. It also has a lower construction, or 4×4, with symmetry 44
32.
24-cell
–
In geometry, the 24-cell is the convex regular 4-polytope with Schläfli symbol. It is also called C24, icositetrachoron, octaplex, icosatetrahedroid, octacube, hyper-diamond or polyoctahedron, the boundary of the 24-cell is composed of 24 octahedral cells with six meeting at each vertex, and three at each edge. Together they have 96 triangular faces,96 edges, and 24 vertices, the vertex figure is a cube. In fact, the 24-cell is the unique convex self-dual regular Euclidean polytope which is neither a polygon nor a simplex, due to this singular property, it does not have a good analogue in 3 dimensions. A 24-cell is given as the hull of its vertices. The vertices of a 24-cell centered at the origin of 4-space, with edges of length 1, the first 8 vertices are the vertices of a regular 16-cell and the other 16 are the vertices of the dual tesseract. This gives an equivalent to cutting a tesseract into 8 cubical pyramids. This is equivalent to the dual of a rectified 16-cell, the analogous construction in 3-space gives the rhombic dodecahedron which, however, is not regular. We can further divide the last 16 vertices into two groups, those with an number of minus signs and those with an odd number. Each of groups of 8 vertices also define a regular 16-cell, the vertices of the 24-cell can then be grouped into three sets of eight with each set defining a regular 16-cell, and with the complement defining the dual tesseract. The vertices of the dual 24-cell are given by all permutations of, the dual 24-cell has edges of length √2 and is inscribed in a 3-sphere of radius √2. Another method of constructing the 24-cell is by the rectification of the 16-cell, the vertex figure of the 16-cell is the octahedron, thus, cutting the vertices of the 16-cell at the midpoint of its incident edges produce 8 octahedral cells. This process also rectifies the tetrahedral cells of the 16-cell which also become octahedra, a regular tessellation of 4-dimensional Euclidean space exists with 24-cells, called an icositetrachoric honeycomb, with Schläfli symbol. Hence, the angle of a 24-cell is 120°. The regular dual tessellation, has 16-cells, the 24 vertices of the 24-cell represent the root vectors of the simple Lie group D4. The vertices can be seen in 3 hyperplanes, with the 6 vertices of a cell on each of the outer hyperplanes and 12 vertices of a cuboctahedron on a central hyperplane. These vertices, combined with the 8 vertices of the 16-cell, represent the 32 root vectors of the B4, the 48 vertices of the union of the 24-cell and its dual form the root system of type F4. The 24 vertices of the original 24-cell form a system of type D4
33.
120-cell
–
In geometry, the 120-cell is the convex regular 4-polytope with Schläfli symbol. It is also called a C120, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid, the boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. It can be thought of as the 4-dimensional analog of the dodecahedron and has called a dodecaplex. Just as a dodecahedron can be built up as a model with 12 pentagons,3 around each vertex, there are 120 cells,720 pentagonal faces,1200 edges, and 600 vertices. There are 4 dodecahedra,6 pentagons, and 4 edges meeting at every vertex, there are 3 dodecahedra and 3 pentagons meeting every edge. The dual polytope of the 120-cell is the 600-cell, the vertex figure of the 120-cell is a tetrahedron. The dihedral angle of the 120-cell is 144° The 600 vertices of the 120-cell include all permutations of, the 120-cell consists of 120 dodecahedral cells. For visualization purposes, it is convenient that the dodecahedron has opposing parallel faces, one can stack dodecahedrons face to face in a straight line bent in the 4th direction into a great circle with a circumference of 10 cells. Starting from this initial ten cell construct there are two common visualizations one can use, a stereographic projection, and a structure of intertwining rings. The cell locations lend themselves to a hyperspherical description, pick an arbitrary cell and label it the North Pole. Twelve great circle meridians radiate out in 3 dimensions, converging at the 5th South Pole cell and this skeleton accounts for 50 of the 120 cells. Starting at the North Pole, we can build up the 120-cell in 9 latitudinal layers, with the exception of the poles, each layer represents a separate 2-sphere, with the equator being a great 2-sphere. The centroids of the 30 equatorial cells form the vertices of an icosidodecahedron, the cells labeled interstitial in the following table do not fall on meridian great circles. Layers 2,4,6 and 8 cells are located over the cells faces. Layers 3 and 7s cells are located directly over the pole cells vertices, layer 5s cells are located over the pole cells edges. The 120-cell can be partitioned into 12 disjoint 10-cell great circle rings, starting with one 10-cell ring, one can place another ring alongside it that spirals around the original ring one complete revolution in ten cells. Five such 10-cell rings can be placed adjacent to the original 10-cell ring, although the outer rings spiral around the inner ring, they actually have no helical torsion. The spiraling is a result of the 3-sphere curvature, the inner ring and the five outer rings now form a six ring, 60-cell solid torus
34.
600-cell
–
In geometry, the 600-cell is the convex regular 4-polytope with Schläfli symbol. It is also called a C600, hexacosichoron and hexacosidedroid, the 600-cell is regarded as the 4-dimensional analog of the icosahedron, since it has five tetrahedra meeting at every edge, just as the icosahedron has five triangles meeting at every vertex. It is also called a tetraplex and polytetrahedron, being bounded by tetrahedral cells and its boundary is composed of 600 tetrahedral cells with 20 meeting at each vertex. Together they form 1200 triangular faces,720 edges, and 120 vertices, the edges form 72 flat regular decagons. Each vertex of the 600-cell is a vertex of six such decagons, References, S. L. van Oss, F. Buekenhout and M. Parker. Its vertex figure is an icosahedron, and its dual polytope is the 120-cell and it has a dihedral angle of cos−1 = ~164. 48°. Each cell touches, in manner,56 other cells. One cell contacts each of the four faces, two cells contact each of the six edges, but not a face, and ten cells contact each of the four vertices, but not a face or edge. The vertices of a 600-cell centered at the origin of 4-space, with edges of length 1/φ, can be given as follows,16 vertices of the form, the remaining 96 vertices are obtained by taking even permutations of ½. Note that the first 16 vertices are the vertices of a tesseract, the eight are the vertices of a 16-cell. The final 96 vertices are the vertices of a snub 24-cell, when interpreted as quaternions, the 120 vertices of the 600-cell form a group under quaternionic multiplication. This group is called the binary icosahedral group and denoted by 2I as it is the double cover of the ordinary icosahedral group I. Each rotational symmetry of the 600-cell is generated by elements of 2IL and 2IR. The centre of RSG consists of the non-rotation Id and the central inversion -Id and we have the isomorphism RSG ≅ /. The order of RSG equals 120 ×120 /2 =7200, the binary icosahedral group is isomorphic to SL. The full symmetry group of the 600-cell is the Weyl group of H4 and this is a group of order 14400. It consists of 7200 rotations and 7200 rotation-reflections, the rotations form an invariant subgroup of the full symmetry group. The rotational symmetry group was described by S. L. van Oss, one can start by realizing the 600-cell is the dual of the 120-cell
35.
Regular polyteron
–
In five-dimensional geometry, a five-dimensional polytope or 5-polytope is a 5-dimensional polytope, bounded by facets. Each polyhedral cell being shared by exactly two 4-polytope facets, a 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet, an edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope, furthermore, the following requirements must be met, Each cell must join exactly two 4-faces. Adjacent 4-faces are not in the same four-dimensional hyperplane, the figure is not a compound of other figures which meet the requirements. The topology of any given 5-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, 5-polytopes may be classified based on properties like convexity and symmetry. Self-intersecting 5-polytopes are also known as star polytopes, from analogy with the shapes of the non-convex Kepler-Poinsot polyhedra. A uniform 5-polytope has a group under which all vertices are equivalent. The faces of a uniform polytope must be regular, a semi-regular 5-polytope contains two or more types of regular 4-polytope facets. There is only one figure, called a demipenteract. A regular 5-polytope has all identical regular 4-polytope facets, a prismatic 5-polytope is constructed by a Cartesian product of two lower-dimensional polytopes. A prismatic 5-polytope is uniform if its factors are uniform, the hypercube is prismatic, but is considered separately because it has symmetries other than those inherited from its factors. A 4-space tessellation is the division of four-dimensional Euclidean space into a grid of polychoral facets. Strictly speaking, tessellations are not polytopes as they do not bound a 5D volume, a uniform 4-space tessellation is one whose vertices are related by a space group and whose facets are uniform 4-polytopes. Regular 5-polytopes can be represented by the Schläfli symbol, with s polychoral facets around each face, the 5-demicube honeycomb, vertex figure is a rectified 5-orthoplex and facets are the 5-orthoplex and 5-demicube. Pyramidal 5-polytopes, or 5-pyramids, can be generated by a 4-polytope base in a 4-space hyperplane connected to a point off the hyperplane, the 5-simplex is the simplest example with a 4-simplex base
36.
5-simplex
–
In five-dimensional geometry, a 5-simplex is a self-dual regular 5-polytope. It has six vertices,15 edges,20 triangle faces,15 tetrahedral cells and it has a dihedral angle of cos−1, or approximately 78. 46°. It can also be called a hexateron, or hexa-5-tope, as a 6-facetted polytope in 5-dimensions, the name hexateron is derived from hexa- for having six facets and teron for having four-dimensional facets. By Jonathan Bowers, a hexateron is given the acronym hix, the hexateron can be constructed from a 5-cell by adding a 6th vertex such that it is equidistant from all the other vertices of the 5-cell. These construction can be seen as facets of the 6-orthoplex or rectified 6-cube respectively and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 13k series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral dihedron and it is first in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron, the 5-simplex, as 220 polytope is first in dimensional series 22k. The regular 5-simplex is one of 19 uniform polytera based on the Coxeter group, the 5-simplex can also be considered a 5-cell pyramid, constructed as a 5-cell base in a 4-space hyperplane, and an apex point above the hyperplane. The five sides of the pyramid are made of 5-cell cells, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 5D uniform polytopes x3o3o3o3o - hix, archived from the original on 4 February 2007. Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary
37.
5-orthoplex
–
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices,40 edges,80 triangle faces,80 tetrahedron cells,32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol, and the second with alternately labeled facets and it is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube, pentacross, derived from combining the family name cross polytope with pente for five in Greek. Triacontaditeron - as a 32-facetted 5-polytope and this polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 5D uniform polytopes x3o3o3o4o - tac. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary
38.
5-cube
–
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices,80 edges,80 square faces,40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or, constructed as 3 tesseracts and it can be called a penteract, a portmanteau of tesseract and pente for five in Greek. It can also be called a regular deca-5-tope or decateron, being a 5-dimensional polytope constructed from 10 regular facets and it is a part of an infinite hypercube family. The dual of a 5-cube is the 5-orthoplex, of the family of orthoplexes. The 5-cube can be seen as an order-3 tesseractic honeycomb on a 4-sphere and it is related to the Euclidean 4-space tesseractic honeycomb and paracompact hyperbolic honeycomb order-5 tesseractic honeycomb. This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 5D uniform polytopes o3o3o3o4x - pent. Archived from the original on 4 February 2007
39.
5-demicube
–
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube with alternated vertices truncated. It was discovered by Thorold Gosset, since it was the only semiregular 5-polytope, he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2,1 and 1 with a ringed node on one of the short branches, and Schläfli symbol or. It exists in the k21 polytope family as 121 with the Gosset polytopes,221,321, the graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead. Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 2√2 are alternate halves of the penteract and it is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family. There are 23 Uniform 5-polytopes that can be constructed from the D5 symmetry of the demipenteract,8 of which are unique to this family, the 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. In Coxeters notation the 5-demicube is given the symbol 121, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 5D uniform polytopes x3o3o *b3o3o - hin, archived from the original on 4 February 2007
40.
E6 (mathematics)
–
The designation E6 comes from the Cartan–Killing classification of the complex simple Lie algebras. This classifies Lie algebras into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled E6, E7, E8, F4, the E6 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E6 is the cyclic group Z/3Z. Its fundamental representation is 27-dimensional, and a basis is given by the 27 lines on a cubic surface, the dual representation, which is inequivalent, is also 27-dimensional. In particle physics, E6 plays a role in some grand unified theories, there is a unique complex Lie algebra of type E6, corresponding to a complex group of complex dimension 78. The complex adjoint Lie group E6 of complex dimension 78 can be considered as a simple real Lie group of real dimension 156, the split form, EI, which has maximal compact subgroup Sp/, fundamental group of order 2 and outer automorphism group of order 2. The quasi-split form EII, which has maximal compact subgroup SU × SU/, fundamental group cyclic of order 6, EIII, which has maximal compact subgroup SO × Spin/, fundamental group Z and trivial outer automorphism group. EIV, which has maximal compact subgroup F4, trivial fundamental group cyclic, the EIV form of E6 is the group of collineations of the octonionic projective plane OP2. It is also the group of determinant-preserving linear transformations of the exceptional Jordan algebra, the exceptional Jordan algebra is 27-dimensional, which explains why the compact real form of E6 has a 27-dimensional complex representation. Over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E6 has exactly one twisted form, known as 2E6, the Dynkin diagram for E6 is given by, which may also be drawn as or. Although they span a space, it is much more symmetrical to consider them as vectors in a six-dimensional subspace of a nine-dimensional space. Two 16-dimensional subalgebras that transform as a Weyl spinor of spin and these have a non-zero last entry. 1 generator which is their chirality generator, and is the sixth Cartan generator, the Lie algebra E6 has an F4 subalgebra, which is the fixed subalgebra of an outer automorphism, and an SU × SU × SU subalgebra. Other maximal subalgebras which have an importance in physics and can be read off the Dynkin diagram, are the algebras of SO × U, in addition to the 78-dimensional adjoint representation, there are two dual 27-dimensional vector representations. The characters of finite dimensional representations of the real and complex Lie algebras, the fundamental representations have dimensions 27,351,2925,351,27 and 78. The E6 polytope is the hull of the roots of E6. It therefore exists in 6 dimensions, its symmetry group contains the Coxeter group for E6 as an index 2 subgroup, the groups of type E6 over arbitrary fields were introduced by Dickson. The points over a field with q elements of the algebraic group E6, whether of the adjoint or simply connected form
41.
E7 (mathematics)
–
The E7 algebra is thus one of the five exceptional cases. The fundamental group of the form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z. The dimension of its representation is 56. There is a unique complex Lie algebra of type E7, corresponding to a group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be considered as a simple real Lie group of real dimension 266. This has fundamental group Z/2Z, has maximal compact subgroup the compact form of E7, the split form, EV, which has maximal compact subgroup SU/, fundamental group cyclic of order 4 and outer automorphism group of order 2. EVI, which has maximal compact subgroup SU·SO/, fundamental group non-cyclic of order 4, EVII, which has maximal compact subgroup SO·E6/, infinite cyclic findamental group and outer automorphism group of order 2. For a complete list of forms of simple Lie algebras. The compact real form of E7 is the group of the 64-dimensional exceptional compact Riemannian symmetric space EVI. This can be seen using a construction known as the magic square, due to Hans Freudenthal. The Tits–Koecher construction produces forms of the E7 Lie algebra from Albert algebras, over finite fields, the Lang–Steinberg theorem implies that H1 =0, meaning that E7 has no twisted forms, see below. The Dynkin diagram for E7 is given by, even though the roots span a 7-dimensional space, it is more symmetric and convenient to represent them as vectors lying in a 7-dimensional subspace of an 8-dimensional vector space. The roots are all the 8×7 permutations of and all the permutations of Note that the 7-dimensional subspace is the subspace where the sum of all the eight coordinates is zero. The simple roots are We have ordered them so that their corresponding nodes in the Dynkin diagram are ordered left to right with the side node last. Given the E7 Cartan matrix and a Dynkin diagram node ordering of, the Weyl group of E7 is of order 2903040, it is the direct product of the cyclic group of order 2 and the unique simple group of order 1451520. E7 has an SU subalgebra, as is evident by noting that in the 8-dimensional description of the root system, in addition to the 133-dimensional adjoint representation, there is a 56-dimensional vector representation, to be found in the E8 adjoint representation. The characters of finite dimensional representations of the real and complex Lie algebras, there exist non-isomorphic irreducible representation of dimensions 1903725824,16349520330, etc. The fundamental representations are those with dimensions 133,8645,365750,27664,1539,56 and 912, E7 is the automorphism group of the following pair of polynomials in 56 non-commutative variables
42.
E8 (mathematics)
–
The E8 algebra is the largest and most complicated of these exceptional cases. Wilhelm Killing discovered the complex Lie algebra E8 during his classification of simple compact Lie algebras, though he did not prove its existence, Cartan determined that a complex simple Lie algebra of type E8 admits three real forms. Each of them rise to a simple Lie group of dimension 248. Chevalley introduced algebraic groups and Lie algebras of type E8 over other fields, for example, the Lie group E8 has dimension 248. Its rank, which is the dimension of its maximal torus, is 8, therefore, the vectors of the root system are in eight-dimensional Euclidean space, they are described explicitly later in this article. The Weyl group of E8, which is the group of symmetries of the maximal torus which are induced by conjugations in the group, has order 21435527 =696729600. There is a Lie algebra Ek for every integer k ≥3, there is a unique complex Lie algebra of type E8, corresponding to a complex group of complex dimension 248. The complex Lie group E8 of complex dimension 248 can be considered as a simple real Lie group of real dimension 496 and this is simply connected, has maximal compact subgroup the compact form of E8, and has an outer automorphism group of order 2 generated by complex conjugation. The split form, EVIII, which has maximal compact subgroup Spin/, EIX, which has maximal compact subgroup E7×SU/, fundamental group of order 2 and has trivial outer automorphism group. For a complete list of forms of simple Lie algebras. Over finite fields, the Lang–Steinberg theorem implies that H1=0, meaning that E8 has no twisted forms, the characters of finite dimensional representations of the real and complex Lie algebras and Lie groups are all given by the Weyl character formula. There are two non-isomorphic irreducible representations of dimension 8634368000, the fundamental representations are those with dimensions 3875,6696000,6899079264,146325270,2450240,30380,248 and 147250. The values at 1 of the Lusztig–Vogan polynomials give the coefficients of the matrices relating the standard representations with the irreducible representations. These matrices were computed after four years of collaboration by a group of 18 mathematicians and computer scientists, led by Jeffrey Adams, the most difficult case is the split real form of E8, where the largest matrix is of size 453060×453060. The Lusztig–Vogan polynomials for all other simple groups have been known for some time. The announcement of the result in March 2007 received extraordinary attention from the media, the representations of the E8 groups over finite fields are given by Deligne–Lusztig theory. One can construct the E8 group as the group of the corresponding e8 Lie algebra. This algebra has a 120-dimensional subalgebra so generated by Jij as well as 128 new generators Qa that transform as a Weyl–Majorana spinor of spin and it is then possible to check that the Jacobi identity is satisfied
43.
1 22 polytope
–
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Eltes 1912 listing of semiregular polytopes and its Coxeter symbol is 122, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. There are two rectifications of the 122, construcated by positions points on the elements of 122, the rectified 122 is constructed by points at the mid-edges of the 122. The birectified 122 is constructed by points at the face centers of the 122. The 1_22 polytope contains 72 vertices, and 54 5-demicubic facets and it has a birectified 5-simplex vertex figure. Its 72 vertices represent the vectors of the simple Lie group E6. Pentacontatetra-peton - 54-facetted polypeton It is created by a Wythoff construction upon a set of 6 hyperplane mirrors in 6-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on either of 2-length branches leaves the 5-demicube,131, the vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 5-simplex,022, the regular complex polyhedron 332, in C2 has a real representation as the 122 polytope in 4-dimensional space. It has 72 vertices,216 3-edges, and 5433 faces and its complex reflection group is 332, order 1296. It has a half-symmetry quasiregular construction as, as a rectification of the Hessian polyhedron, the 122 is related to the 24-cell by a geometric folding E6 → F4 of Coxeter-Dynkin diagrams, E6 corresponding to 122 in 6 dimensions, F4 to the 24-cell in 4 dimensions. This can be seen in the Coxeter plane projections, the 24 vertices of the 24-cell are projected in the same two rings as seen in the 122. This polytope is the figure for a uniform tessellation of 6-dimensional space,222. The rectified 122 polytope can tessellate 6-dimensional space as the Voronoi cell of the E6* honeycomb lattice, removing the ring on the short branch leaves the birectified 5-simplex. Removing the ring on the either 2-length branch leaves the birectified 5-orthoplex in its alternated form, the vertex figure is determined by removing the ringed node and ringing the neighboring ring. This makes 3-3 duoprism prism, ××, Vertices are colored by their multiplicity in this projection, in progressive order, red, orange, yellow. Truncated 122 polytope Its construction is based on the E6 group, Vertices are colored by their multiplicity in this projection, in progressive order, red, orange, yellow. Bicantellated 221 Birectified pentacontitetrapeton Vertices are colored by their multiplicity in this projection, in order, red, orange
44.
2 31 polytope
–
In 7-dimensional geometry,231 is a uniform polytope, constructed from the E7 group. Its Coxeter symbol is 231, describing its bifurcating Coxeter-Dynkin diagram, the rectified 231 is constructed by points at the mid-edges of the 231. The 231 is composed of 126 vertices,2016 edges,10080 faces,20160 cells,16128 4-faces,4788 5-faces,632 6-faces and its vertex figure is a 6-demicube. Its 126 vertices represent the vectors of the simple Lie group E7. This polytope is the figure for a uniform tessellation of 7-dimensional space,331. E. L. Elte named it V126 in his 1912 listing of semiregular polytopes and it was called 231 by Coxeter for its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. Pentacontihexa-pentacosiheptacontihexa-exon - 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space, the facet information can be extracted from its Coxeter-Dynkin diagram. Removing the node on the branch leaves the 6-simplex. There are 576 of these facets and these facets are centered on the locations of the vertices of the 321 polytope. Removing the node on the end of the 3-length branch leaves the 221, there are 56 of these facets. These facets are centered on the locations of the vertices of the 132 polytope, the vertex figure is determined by removing the ringed node and ringing the neighboring node. The rectified 231 is a rectification of the 231 polytope, creating new vertices on the center of edge of the 231, rectified pentacontihexa-pentacosiheptacontihexa-exon - as a rectified 56-576 facetted polyexon It is created by a Wythoff construction upon a set of 7 hyperplane mirrors in 7-dimensional space. The facet information can be extracted from its Coxeter-Dynkin diagram, removing the node on the short branch leaves the rectified 6-simplex. Removing the node on the end of the 2-length branch leaves the, removing the node on the end of the 3-length branch leaves the rectified 221. The vertex figure is determined by removing the ringed node and ringing the neighboring node, list of E7 polytopes Elte, E. L. The Semiregular Polytopes of the Hyperspaces, Groningen, University of Groningen H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Klitzing, Richard. X3o3o3o *c3o3o3o - laq, o3x3o3o *c3o3o3o - rolaq
45.
4 21 polytope
–
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper and he called it an 8-ic semi-regular figure. Its Coxeter symbol is 421, describing its bifurcating Coxeter-Dynkin diagram, the rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the face centers of the 421. The trirectified 421 is constructed by points at the centers of the 421. The 421 is composed of 17,280 7-simplex and 2,160 7-orthoplex facets and its vertex figure is the 321 polytope. For visualization this 8-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 240 vertices within a regular triacontagon and its 6720 edges are drawn between the 240 vertices. Specific higher elements can also be extracted and drawn on this projection, as its 240 vertices represent the root vectors of the simple Lie group E8, the polytope is sometimes referred to as the E8 polytope. The vertices of this polytope can be obtained by taking the 240 integral octonions of norm 1, because the octonions are a nonassociative normed division algebra, these 240 points have a multiplication operation making them not into a group but rather a loop, in fact a Moufang loop. This polytope was discovered by Thorold Gosset, who described it in his 1900 paper as an 8-ic semi-regular figure and it is the last finite semiregular figure in his enumeration, semiregular to him meaning that it contained only regular facets. E. L. Elte named it V240 in his 1912 listing of semiregular polytopes, Coxeter called it 421 because its Coxeter-Dynkin diagram has three branches of length 4,2, and 1, with a single node on the terminal node of the 4 branch. Dischiliahectohexaconta-myriaheptachiliadiacosioctaconta-zetton - 2160-17280 facetted polyzetton It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space and these 56 points are the vertices of a 321 polytope in 7 dimensions. These 126 points are the vertices of a 231 polytope in 7 dimensions. Each vertex also has 56 third nearest neighbors, which are the negatives of its nearest neighbors, there are 17,280 simplex facets and 2160 orthoplex facets. Since every 7-simplex has 7 6-simplex facets, each incident to no other 6-simplex, since every 7-orthoplex has 128 6-simplex facets, half of which are not incident to 7-simplexes, the 421 polytope has 138,240 6-simplex faces that are not facets of 7-simplexes. The 421 polytope thus has two kinds of 6-simplex faces, not interchanged by symmetries of this polytope, the total number of 6-simplex faces is 259200. The vertex figure of a polytope is obtained by removing the ringed node. These graphs represent orthographic projections in the E8, E7, E6, the vertex colors are by overlapping multiplicity in the projection, colored by increasing order of multiplicities as red, orange, yellow, green
46.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker