Radial velocity
The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is taken to be the observer on Earth, so the radial velocity denotes the speed with which the object moves away from or approaches the Earth. In astronomy, radial velocity is measured to the first order of approximation by Doppler spectroscopy; the quantity obtained by this method may be called the barycentric radial-velocity measure or spectroscopic radial velocity. However, due to relativistic and cosmological effects over the great distances that light travels to reach the observer from an astronomical object, this measure cannot be transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. By contrast, astrometric radial velocity is determined by astrometric observations.
Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding and increases for objects that were approaching. The radial velocity of a star or other luminous distant objects can be measured by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects was increasing. In many binary stars, the orbital motion causes radial velocity variations of several kilometers per second; as the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, some orbital elements, such as eccentricity and semimajor axis; the same method has been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass using the binary mass function.
Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit; the radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By looking at the spectrum of a star—and so, measuring its velocity—it can be determined if it moves periodically due to the influence of an exoplanet companion. From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of the Earth's elliptic motion around the sun at ± 30 km/s, a monthly rotation of ± 13 m/s of the Earth around the center of gravity of the Earth-Moon system, the daily rotation of the telescope with the Earth crust around the Earth axis, up to ±460 m/s at the equator and proportional to the cosine of the telescope's geographic latitude, small contributions from the Earth polar motion at the level of mm/s, contributions of 230 km/s from the motion around the Galactic center and associated proper motions.
In the case of spectroscopic measurements corrections of the order of ±20 cm/s with respect to aberration. Proper motion Peculiar velocity Relative velocity Space velocity The Radial Velocity Equation in the Search for Exoplanets
Aquarius (constellation)
Aquarius is a constellation of the zodiac, situated between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", its symbol is, a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac, it was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, it remains one of the 88 modern constellations. It is found in a region called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, Eridanus the river. At apparent magnitude 2.9, Beta Aquarii is the brightest star in the constellation. Aquarius is identified as GU. LA "The Great One" in the Babylonian star catalogues and represents the god Ea himself, depicted holding an overflowing vase; the Babylonian star-figure appears on entitlement stones and cylinder seals from the second millennium. It contained the winter solstice in the Early Bronze Age. In Old Babylonian astronomy, Ea was the ruler of the southernmost quarter of the Sun's path, the "Way of Ea", corresponding to the period of 45 days on either side of winter solstice.
Aquarius was associated with the destructive floods that the Babylonians experienced, thus was negatively connoted. In Ancient Egypt astronomy, Aquarius was associated with the annual flood of the Nile. In the Greek tradition, the constellation came to be represented as a single vase from which a stream poured down to Piscis Austrinus; the name in the Hindu zodiac is kumbha "water-pitcher". In Greek mythology, Aquarius is sometimes associated with Deucalion, the son of Prometheus who built a ship with his wife Pyrrha to survive an imminent flood, they sailed for nine days before washing ashore on Mount Parnassus. Aquarius is sometimes identified with beautiful Ganymede, a youth in Greek mythology and the son of Trojan king Tros, taken to Mount Olympus by Zeus to act as cup-carrier to the gods. Neighboring Aquila represents the eagle, under Zeus' command. An alternative version of the tale recounts Ganymede's kidnapping by the goddess of the dawn, motivated by her affection for young men, yet another figure associated with the water bearer is Cecrops I, a king of Athens who sacrificed water instead of wine to the gods.
In the first century, Ptolemy's Almagest established the common Western depiction of Aquarius. His water jar, an asterism itself, consists of Gamma, Pi, Zeta Aquarii; the water bearer's head is represented by 5th magnitude 25 Aquarii while his left shoulder is Beta Aquarii. In Chinese astronomy, the stream of water flowing from the Water Jar was depicted as the "Army of Yu-Lin"; the name "Yu-lin" means "feathers and forests", referring to the numerous light-footed soldiers from the northern reaches of the empire represented by these faint stars. The constellation's stars were the most numerous of any Chinese constellation, numbering 45, the majority of which were located in modern Aquarius; the celestial army was protected by the wall Leibizhen, which counted Iota, Lambda and Sigma Aquarii among its 12 stars. 88, 89, 98 Aquarii represent Fou-youe, the axes used as weapons and for hostage executions. In Aquarius is Loui-pi-tchin, the ramparts that stretch from 29 and 27 Piscium and 33 and 30 Aquarii through Phi, Lambda and Iota Aquarii to Delta, Gamma and Epsilon Capricorni.
Near the border with Cetus, the axe Fuyue was represented by three stars. Tienliecheng has a disputed position; the Water Jar asterism was seen to the ancient Chinese as Fenmu. Nearby, the emperors' mausoleum Xiuliang stood, demarcated by Kappa Aquarii and three other collinear stars. Ku and Qi, each composed of two stars, were located in the same region. Three of the Chinese lunar mansions shared their name with constellations. Nu the name for the 10th lunar mansion, was a handmaiden represented by Epsilon, Mu, 3, 4 Aquarii; the 11th lunar mansion shared its name with the constellation Xu, formed by Beta Aquarii and Alpha Equulei. Wei, the rooftop and 12th lunar mansion, was a V-shaped constellation formed by Alpha Aquarii, Theta Pegasi, Epsilon Pegasi. Despite both its prominent position on the zodiac and its large size, Aquarius has no bright stars, its four brightest stars being less than magnitude 2. However, recent research has shown that there are several stars lying within its borders that possess planetary systems.
The two brightest stars and Beta Aquarii, are luminous yellow supergiants, of spectral types G0Ib and G2Ib that were once hot blue-white B-class main sequence stars 5 to 9 times as massive as the Sun. The two are moving through space perpendicular to the plane of the Milky Way. Just shading Alpha, Beta Aquarii is the brightest star in Aquarius with an apparent magnitude of 2.91. It has the proper name of Sadalsuud. Having cooled and swollen to around 50 times the Sun
Effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is used as an estimate of a body's surface temperature when the body's emissivity curve is not known; when the star's or planet's net emissivity in the relevant wavelength band is less than unity, the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect; the effective temperature of a star is the temperature of a black body with the same luminosity per surface area as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total luminosity of a star is L = 4πR2σTeff4, where R is the stellar radius; the definition of the stellar radius is not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius, defined by a certain value of the Rosseland optical depth within the stellar atmosphere.
The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star; the effective temperature of our Sun is around 5780 kelvins. Stars have a decreasing temperature gradient; the "core temperature" of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the cool—by stellar standards—red M stars that radiate in the infrared to the hot blue O stars that radiate in the ultraviolet; the effective temperature of a star indicates the amount of heat that the star radiates per unit of surface area. From the warmest surfaces to the coolest is the sequence of stellar classifications known as O, B, A, F, G, K, M. A red star could be a tiny red dwarf, a star of feeble energy production and a small surface or a bloated giant or supergiant star such as Antares or Betelgeuse, either of which generates far greater energy but passes it through a surface so large that the star radiates little per unit of surface area.
A star near the middle of the spectrum, such as the modest Sun or the giant Capella radiates more energy per unit of surface area than the feeble red dwarf stars or the bloated supergiants, but much less than such a white or blue star as Vega or Rigel. To find the effective temperature of a planet, it can be calculated by equating the power received by the planet to the known power emitted by a blackbody of temperature T. Take the case of a planet at a distance D from the star, of luminosity L. Assuming the star radiates isotropically and that the planet is a long way from the star, the power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts some of the power, spread over the surface of a sphere of radius D; the calculation assumes the planet reflects some of the incoming radiation by incorporating a parameter called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo of 0 means all of it is absorbed; the expression for absorbed power is then: P a b s = L r 2 4 D 2 The next assumption we can make is that the entire planet is at the same temperature T, that the planet radiates as a blackbody.
The Stefan–Boltzmann law gives an expression for the power radiated by the planet: P r a d = 4 π r 2 σ T 4 Equating these two expressions and rearranging gives an expression for the effective temperature: T = L 16 π σ D 2 4 Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 88 K and 51 Pegasi b is 1,258 K. A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input; the actual temperature depends on atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b is 1,130 K, but the effective temperature is 1,359 K; the internal heating within Jupiter raises the effective temperature to about 152 K. The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation; the area of the planet that absorbs the power from the star is Aabs, some fraction of the total surface area Atotal = 4πr2, where r is the radius of the planet.
This area intercepts some of the power, spread over the surface of a sphere of radius D. We allow the planet to reflect some of the incoming radiation by incorporating a parameter a called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo
Apparent magnitude
The apparent magnitude of an astronomical object is a number, a measure of its brightness as seen by an observer on Earth. The magnitude scale is logarithmic. A difference of 1 in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The brighter an object appears, the lower its magnitude value, with the brightest astronomical objects having negative apparent magnitudes: for example Sirius at −1.46. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry. Apparent magnitudes are used to quantify the brightness of sources at ultraviolet and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or simply as V, as in "mV = 15" or "V = 15" to describe a 15th-magnitude object; the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes.
The brightest stars in the night sky were said to be of first magnitude, whereas the faintest were of sixth magnitude, the limit of human visual perception. Each grade of magnitude was considered twice the brightness of the following grade, although that ratio was subjective as no photodetectors existed; this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest and is believed to have originated with Hipparchus. In 1856, Norman Robert Pogson formalized the system by defining a first magnitude star as a star, 100 times as bright as a sixth-magnitude star, thereby establishing the logarithmic scale still in use today; this implies that a star of magnitude m is about 2.512 times as bright as a star of magnitude m + 1. This figure, the fifth root of 100, became known as Pogson's Ratio; the zero point of Pogson's scale was defined by assigning Polaris a magnitude of 2. Astronomers discovered that Polaris is variable, so they switched to Vega as the standard reference star, assigning the brightness of Vega as the definition of zero magnitude at any specified wavelength.
Apart from small corrections, the brightness of Vega still serves as the definition of zero magnitude for visible and near infrared wavelengths, where its spectral energy distribution approximates that of a black body for a temperature of 11000 K. However, with the advent of infrared astronomy it was revealed that Vega's radiation includes an Infrared excess due to a circumstellar disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures. However, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the magnitude scale was extrapolated to all wavelengths on the basis of the black-body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, as a function of wavelength, can be computed. Small deviations are specified between systems using measurement apparatuses developed independently so that data obtained by different astronomers can be properly compared, but of greater practical importance is the definition of magnitude not at a single wavelength but applying to the response of standard spectral filters used in photometry over various wavelength bands.
With the modern magnitude systems, brightness over a wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30; the brightness of Vega is exceeded by four stars in the night sky at visible wavelengths as well as the bright planets Venus and Jupiter, these must be described by negative magnitudes. For example, the brightest star of the celestial sphere, has an apparent magnitude of −1.4 in the visible. Negative magnitudes for other bright astronomical objects can be found in the table below. Astronomers have developed other photometric zeropoint systems as alternatives to the Vega system; the most used is the AB magnitude system, in which photometric zeropoints are based on a hypothetical reference spectrum having constant flux per unit frequency interval, rather than using a stellar spectrum or blackbody curve as the reference. The AB magnitude zeropoint is defined such that an object's AB and Vega-based magnitudes will be equal in the V filter band.
As the amount of light received by a telescope is reduced by transmission through the Earth's atmosphere, any measurement of apparent magnitude is corrected for what it would have been as seen from above the atmosphere. The dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of 100. Therefore, the apparent magnitude m, in the spectral band x, would be given by m x = − 5 log 100 , more expressed in terms of common logarithms as m x
Orbital eccentricity
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.
For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".
"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.
Ve
Variable star
A variable star is a star whose brightness as seen from Earth fluctuates. This variation may be caused by a change in emitted light or by something blocking the light, so variable stars are classified as either: Intrinsic variables, whose luminosity changes. Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth. Many most, stars have at least some variation in luminosity: the energy output of our Sun, for example, varies by about 0.1% over an 11-year solar cycle. An ancient Egyptian calendar of lucky and unlucky days composed some 3,200 years ago may be the oldest preserved historical document of the discovery of a variable star, the eclipsing binary Algol. Of the modern astronomers, the first variable star was identified in 1638 when Johannes Holwarda noticed that Omicron Ceti pulsated in a cycle taking 11 months; this discovery, combined with supernovae observed in 1572 and 1604, proved that the starry sky was not eternally invariable as Aristotle and other ancient philosophers had taught.
In this way, the discovery of variable stars contributed to the astronomical revolution of the sixteenth and early seventeenth centuries. The second variable star to be described was the eclipsing variable Algol, by Geminiano Montanari in 1669. Chi Cygni was identified in 1686 by G. Kirch R Hydrae in 1704 by G. D. Maraldi. By 1786 ten variable stars were known. John Goodricke himself discovered Beta Lyrae. Since 1850 the number of known variable stars has increased especially after 1890 when it became possible to identify variable stars by means of photography; the latest edition of the General Catalogue of Variable Stars lists more than 46,000 variable stars in the Milky Way, as well as 10,000 in other galaxies, over 10,000'suspected' variables. The most common kinds of variability involve changes in brightness, but other types of variability occur, in particular changes in the spectrum. By combining light curve data with observed spectral changes, astronomers are able to explain why a particular star is variable.
Variable stars are analysed using photometry, spectrophotometry and spectroscopy. Measurements of their changes in brightness can be plotted to produce light curves. For regular variables, the period of variation and its amplitude can be well established. Peak brightnesses in the light curve are known as maxima. Amateur astronomers can do useful scientific study of variable stars by visually comparing the star with other stars within the same telescopic field of view of which the magnitudes are known and constant. By estimating the variable's magnitude and noting the time of observation a visual lightcurve can be constructed; the American Association of Variable Star Observers collects such observations from participants around the world and shares the data with the scientific community. From the light curve the following data are derived: are the brightness variations periodical, irregular, or unique? What is the period of the brightness fluctuations? What is the shape of the light curve? From the spectrum the following data are derived: what kind of star is it: what is its temperature, its luminosity class? is it a single star, or a binary? does the spectrum change with time?
Changes in brightness may depend on the part of the spectrum, observed if the wavelengths of spectral lines are shifted this points to movements strong magnetic fields on the star betray themselves in the spectrum abnormal emission or absorption lines may be indication of a hot stellar atmosphere, or gas clouds surrounding the star. In few cases it is possible to make pictures of a stellar disk; these may show darker spots on its surface. Combining light curves with spectral data gives a clue as to the changes that occur in a variable star. For example, evidence for a pulsating star is found in its shifting spectrum because its surface periodically moves toward and away from us, with the same frequency as its changing brightness. About two-thirds of all variable stars appear to be pulsating. In the 1930s astronomer Arthur Stanley Eddington showed that the mathematical equations that describe the interior of a star may lead to instabilities that cause a star to pulsate; the most common type of instability is related to oscillations in the degree of ionization in outer, convective layers of the star.
Suppose the star is in the swelling phase. Its outer layers expand; because of the decreasing temperature the degree of ionization decreases. This makes the gas more transparent, thus makes it easier for the star to radiate its energy; this in turn will make the star start to contract. As the gas is thereby compressed, it is heated and the degree of ionization again increases. Thi
Proper motion
Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system are given in the direction of right ascension and of declination, their combined value is computed as the total proper motion. It has dimensions of angle per time arcseconds per year or milliarcseconds per year. Knowledge of the proper motion and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, by coordinate transformation, the motion in respect to the Milky Way. Proper motion is not "proper", because it includes a component due to the motion of the Solar System itself. Over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time.
Ursa Major or Crux, for example, looks nearly the same now. However, precise long-term observations show that the constellations change shape, albeit slowly, that each star has an independent motion; this motion is caused by the movement of the stars relative to the Solar System. The Sun travels in a nearly circular orbit about the center of the Milky Way at a speed of about 220 km/s at a radius of 8 kPc from the center, which can be taken as the rate of rotation of the Milky Way itself at this radius; the proper motion is a two-dimensional vector and is thus defined by two quantities: its position angle and its magnitude. The first quantity indicates the direction of the proper motion on the celestial sphere, the second quantity is the motion's magnitude expressed in arcseconds per year or milliarcsecond per year. Proper motion may alternatively be defined by the angular changes per year in the star's right ascension and declination, using a constant epoch in defining these; the components of proper motion by convention are arrived at.
Suppose an object moves from coordinates to coordinates in a time Δt. The proper motions are given by: μ α = α 2 − α 1 Δ t, μ δ = δ 2 − δ 1 Δ t; the magnitude of the proper motion μ is given by the Pythagorean theorem: μ 2 = μ δ 2 + μ α 2 ⋅ cos 2 δ, μ 2 = μ δ 2 + μ α ∗ 2, where δ is the declination. The factor in cos2δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cosδ, for example, zero at the pole. Thus, the component of velocity parallel to the equator corresponding to a given angular change in α is smaller the further north the object's location; the change μα, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", μδ the "proper motion in declination". If the proper motion in right ascension has been converted by cosδ, the result is designated μα*. For example, the proper motion results in right ascension in the Hipparcos Catalogue have been converted. Hence, the individual proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions.
The position angle θ is related to these components by: μ sin θ = μ α cos δ = μ α ∗, μ cos θ = μ δ. Motions in equatorial coordinates can be converted to motions in galactic coordinates. For the majority of stars seen in the sky, the observed proper motions are small and unremarkable; such stars are either faint or are distant, have changes of below 10 milliarcseconds per year, do not appear to move appreciably over many millennia. A few do have significant motions, are called high-proper motion stars. Motions can be in seemingly random directions. Two or more stars, double stars or open star clusters, which are moving in similar directions, exhibit so-called shared or common proper motion, suggesting they may be gravitationally attached or share similar motion in space. Barnard's Star has the largest proper motion of all stars, moving at 10.3 seconds of arc per year. L