1.
System of measurement
–
A system of measurement is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce, systems of measurement in modern use include the metric system, the imperial system, and United States customary units. The French Revolution gave rise to the system, and this has spread around the world. In most systems, length, mass, and time are base quantities, later science developments showed that either electric charge or electric current could be added to extend the set of base quantities by which many other metrological units could be easily defined. Other quantities, such as power and speed, are derived from the set, for example. Such arrangements were satisfactory in their own contexts, the preference for a more universal and consistent system only gradually spread with the growth of science. Changing a measurement system has substantial financial and cultural costs which must be offset against the advantages to be obtained using a more rational system. However pressure built up, including scientists and engineers for conversion to a more rational. The unifying characteristic is that there was some definition based on some standard, eventually cubits and strides gave way to customary units to met the needs of merchants and scientists. In the metric system and other recent systems, a basic unit is used for each base quantity. Often secondary units are derived from the units by multiplying by powers of ten. Thus the basic unit of length is the metre, a distance of 1.234 m is 1,234 millimetres. Metrication is complete or nearly complete in almost all countries, US customary units are heavily used in the United States and to some degree in Liberia. Traditional Burmese units of measurement are used in Burma, U. S. units are used in limited contexts in Canada due to the large volume of trade, there is also considerable use of Imperial weights and measures, despite de jure Canadian conversion to metric. In the United States, metric units are used almost universally in science, widely in the military, and partially in industry, but customary units predominate in household use. At retail stores, the liter is a used unit for volume, especially on bottles of beverages. Some other standard non-SI units are still in use, such as nautical miles and knots in aviation. Metric systems of units have evolved since the adoption of the first well-defined system in France in 1795, during this evolution the use of these systems has spread throughout the world, first to non-English-speaking countries, and then to English speaking countries

2.
Metric system
–
The metric system is an internationally agreed decimal system of measurement. Many sources also cite Liberia and Myanmar as the other countries not to have done so. Although the originators intended to devise a system that was accessible to all. Control of the units of measure was maintained by the French government until 1875, when it was passed to an intergovernmental organisation. From its beginning, the features of the metric system were the standard set of interrelated base units. These base units are used to larger and smaller units that could replace a huge number of other units of measure in existence. Although the system was first developed for use, the development of coherent units of measure made it particularly suitable for science. Although the metric system has changed and developed since its inception, designed for transnational use, it consisted of a basic set of units of measurement, now known as base units. At the outbreak of the French Revolution in 1789, most countries, the metric system was designed to be universal—in the words of the French philosopher Marquis de Condorcet it was to be for all people for all time. However, these overtures failed and the custody of the metric system remained in the hands of the French government until 1875. In languages where the distinction is made, unit names are common nouns, the concept of using consistent classical names for the prefixes was first proposed in a report by the Commission on Weights and Measures in May 1793. The prefix kilo, for example, is used to multiply the unit by 1000, thus the kilogram and kilometre are a thousand grams and metres respectively, and a milligram and millimetre are one thousandth of a gram and metre respectively. These relations can be written symbolically as,1 mg =0, however,1935 extensions to the prefix system did not follow this convention, the prefixes nano- and micro-, for example have Greek roots. During the 19th century the prefix myria-, derived from the Greek word μύριοι, was used as a multiplier for 10000, prefixes are not usually used to indicate multiples of a second greater than 1, the non-SI units of minute, hour and day are used instead. On the other hand, prefixes are used for multiples of the unit of volume. The base units used in the system must be realisable. Each of the units in SI is accompanied by a mise en pratique published by the BIPM that describes in detail at least one way in which the base unit can be measured. In practice, such realisation is done under the auspices of a mutual acceptance arrangement, in the original version of the metric system the base units could be derived from a specified length and the weight of a specified volume of pure water

3.
Length
–
In geometric measurements, length is the most extended dimension of an object. In the International System of Quantities, length is any quantity with dimension distance, in other contexts length is the measured dimension of an object. For example, it is possible to cut a length of a wire which is shorter than wire thickness. Length may be distinguished from height, which is vertical extent, and width or breadth, length is a measure of one dimension, whereas area is a measure of two dimensions and volume is a measure of three dimensions. In most systems of measurement, the unit of length is a base unit, measurement has been important ever since humans settled from nomadic lifestyles and started using building materials, occupying land and trading with neighbours. As society has become more technologically oriented, much higher accuracies of measurement are required in a diverse set of fields. One of the oldest units of measurement used in the ancient world was the cubit which was the length of the arm from the tip of the finger to the elbow. This could then be subdivided into shorter units like the foot, hand or finger, the cubit could vary considerably due to the different sizes of people. After Albert Einsteins special relativity, length can no longer be thought of being constant in all reference frames. Thus a ruler that is one meter long in one frame of reference will not be one meter long in a frame that is travelling at a velocity relative to the first frame. This means length of an object is variable depending on the observer, in the physical sciences and engineering, when one speaks of units of length, the word length is synonymous with distance. There are several units that are used to measure length, in the International System of Units, the basic unit of length is the metre and is now defined in terms of the speed of light. The centimetre and the kilometre, derived from the metre, are commonly used units. In U. S. customary units, English or Imperial system of units, commonly used units of length are the inch, the foot, the yard, and the mile. Units used to denote distances in the vastness of space, as in astronomy, are longer than those typically used on Earth and include the astronomical unit, the light-year. Dimension Distance Orders of magnitude Reciprocal length Smoot Unit of length

4.
SI units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version

5.
Metre
–
The metre or meter, is the base unit of length in the International System of Units. The metre is defined as the length of the path travelled by light in a vacuum in 1/299792458 seconds, the metre was originally defined in 1793 as one ten-millionth of the distance from the equator to the North Pole. In 1799, it was redefined in terms of a metre bar. In 1960, the metre was redefined in terms of a number of wavelengths of a certain emission line of krypton-86. In 1983, the current definition was adopted, the imperial inch is defined as 0.0254 metres. One metre is about 3 3⁄8 inches longer than a yard, Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations except the United States and the Philippines, which use meter. Measuring devices are spelled -meter in all variants of English, the suffix -meter has the same Greek origin as the unit of length. This range of uses is found in Latin, French, English. Thus calls for measurement and moderation. In 1668 the English cleric and philosopher John Wilkins proposed in an essay a decimal-based unit of length, as a result of the French Revolution, the French Academy of Sciences charged a commission with determining a single scale for all measures. In 1668, Wilkins proposed using Christopher Wrens suggestion of defining the metre using a pendulum with a length which produced a half-period of one second, christiaan Huygens had observed that length to be 38 Rijnland inches or 39.26 English inches. This is the equivalent of what is now known to be 997 mm, no official action was taken regarding this suggestion. In the 18th century, there were two approaches to the definition of the unit of length. One favoured Wilkins approach, to define the metre in terms of the length of a pendulum which produced a half-period of one second. The other approach was to define the metre as one ten-millionth of the length of a quadrant along the Earths meridian, that is, the distance from the Equator to the North Pole. This means that the quadrant would have defined as exactly 10000000 metres at that time. To establish a universally accepted foundation for the definition of the metre, more measurements of this meridian were needed. This portion of the meridian, assumed to be the length as the Paris meridian, was to serve as the basis for the length of the half meridian connecting the North Pole with the Equator

6.
Imperial units
–
The system of imperial units or the imperial system is the system of units first defined in the British Weights and Measures Act of 1824, which was later refined and reduced. The Imperial units replaced the Winchester Standards, which were in effect from 1588 to 1825, the system came into official use across the British Empire. The imperial system developed from what were first known as English units, the Weights and Measures Act of 1824 was initially scheduled to go into effect on 1 May 1825. However, the Weights and Measures Act of 1825 pushed back the date to 1 January 1826, the 1824 Act allowed the continued use of pre-imperial units provided that they were customary, widely known, and clearly marked with imperial equivalents. Apothecaries units are mentioned neither in the act of 1824 nor 1825, at the time, apothecaries weights and measures were regulated in England, Wales, and Berwick-upon-Tweed by the London College of Physicians, and in Ireland by the Dublin College of Physicians. In Scotland, apothecaries units were unofficially regulated by the Edinburgh College of Physicians, the three colleges published, at infrequent intervals, pharmacopoeiae, the London and Dublin editions having the force of law. The Medical Act of 1858 transferred to The Crown the right to publish the official pharmacopoeia and to regulate apothecaries weights, Metric equivalents in this article usually assume the latest official definition. Before this date, the most precise measurement of the imperial Standard Yard was 0.914398416 metres, in 1824, the various different gallons in use in the British Empire were replaced by the imperial gallon, a unit close in volume to the ale gallon. It was originally defined as the volume of 10 pounds of distilled water weighed in air with brass weights with the standing at 30 inches of mercury at a temperature of 62 °F. The Weights and Measures Act of 1985 switched to a gallon of exactly 4.54609 l and these measurements were in use from 1826, when the new imperial gallon was defined, but were officially abolished in the United Kingdom on 1 January 1971. In the USA, though no longer recommended, the system is still used occasionally in medicine. The troy pound was made the unit of mass by the 1824 Act, however, its use was abolished in the UK on 1 January 1879, with only the troy ounce. The Weights and Measures Act 1855 made the pound the primary unit of mass. In all the systems, the unit is the pound. For the yard, the length of a pendulum beating seconds at the latitude of Greenwich at Mean Sea Level in vacuo was defined as 39.01393 inches, the imperial system is one of many systems of English units. Although most of the units are defined in more than one system, some units were used to a much greater extent, or for different purposes. The distinctions between these systems are not drawn precisely. One such distinction is that between these systems and older British/English units/systems or newer additions, the US customary system is historically derived from the English units that were in use at the time of settlement

7.
US customary units
–
United States customary units are a system of measurements commonly used in the United States. The United States customary system developed from English units which were in use in the British Empire before the US declared its independence, however, the British system of measures was overhauled in 1824 to create the imperial system, changing the definitions of some units. Therefore, while many U. S. units are similar to their Imperial counterparts. The majority of U. S. customary units were redefined in terms of the meter and these definitions were refined by the international yard and pound agreement of 1959. Americans primarily use customary units in commercial activities, as well as for personal and social use, in science, medicine, many sectors of industry and some of government, metric units are used. The International System of Units, the form of the metric system, is preferred for many uses by the U. S. National Institute of Standards. The United States system of units is similar to the British imperial system, both systems are derived from English units, a system which had evolved over the millennia before American independence, and which had its roots in Roman and Anglo-Saxon units. The customary system was championed by the U. S. -based International Institute for Preserving and Perfecting Weights, advocates of the customary system saw the French Revolutionary, or metric, system as atheistic. An auxiliary of the Institute in Ohio published a poem with wording such as down with every metric scheme and A perfect inch, one adherent of the customary system called it a just weight and a just measure, which alone are acceptable to the Lord. The U. S. government passed the Metric Conversion Act of 1975, the legislation states that the federal government has a responsibility to assist industry as it voluntarily converts to the metric system, i. e. metrification. This is most evident in U. S. labeling requirements on food products, according to the CIA Factbook, the United States is one of three nations that have not adopted the metric system as their official system of weights and measures. U. S. customary units are used on consumer products. Metric units are standard in science, medicine, as well as many sectors of industry and government, the metric system also lacks a parallel to the foot. Frequently, however, these units designate quite different sizes, for example, the mile ranged by country from one-half to five U. S. miles, foot and pound also had varying definitions. Historically, a range of non-SI units were used in the U. S. and in Britain. This article deals only with the commonly used or officially defined in the U. S. For measuring length, the U. S. customary system uses the inch, foot, yard, and mile, since July 1,1959, these have been defined on the basis of 1 yard =0.9144 meters except for some applications in surveying. The U. S. the United Kingdom and other Commonwealth countries agreed on this definition, the NAD27 was replaced in the 1980s by the North American Datum of 1983, which is defined in meters

8.
Foot (unit)
–
The foot is a unit of length in the imperial and US customary systems of measurement. Since 1959, both units have been defined by international agreement as equivalent to 0.3048 meters exactly, in both systems, the foot comprises 12 inches and three feet compose a yard. Historically the foot was a part of local systems of units, including the Greek, Roman, Chinese, French. It varied in length from country to country, from city to city and its length was usually between 250 mm and 335 mm and was generally, but not always, subdivided into 12 inches or 16 digits. The United States is the industrialized nation that uses the international foot and the survey foot in preference to the meter in its commercial, engineering. The foot is legally recognized in the United Kingdom, road signs must use imperial units, the measurement of altitude in international aviation is one of the few areas where the foot is widely used outside the English-speaking world. The length of the international foot corresponds to a foot with shoe size of 13,14,15.5 or 46. Historically the human body has been used to provide the basis for units of length. The foot of a male is typically about 15. 3% of his height, giving a person of 160 cm a foot of 245 mm. These figures are less than the used in most cities over time. Archeologists believe that the Egyptians, Ancient Indians and Mesopotamians preferred the cubit while the Romans, under the Harappan linear measures, Indus cities during the Bronze Age used a foot of 13.2 inches and a cubit of 20.8 inches. The Egyptian equivalent of the measure of four palms or 16 digits—was known as the djeser and has been reconstructed as about 30 cm. The Greek foot had a length of 1⁄600 of a stadion, one stadion being about 181.2 m, the standard Roman foot was normally about 295.7 mm, but in the provinces, the pes Drusianus was used, with a length of about 334 mm. Originally both the Greeks and the Romans subdivided the foot into 16 digits, but in later years, after the fall of the Roman Empire, some Roman traditions were continued but others fell into disuse. In AD790 Charlemagne attempted to reform the units of measure in his domains and his units of length were based on the toise and in particular the toise de lÉcritoire, the distance between the fingertips of the outstretched arms of a man. The toise has 6 pieds each of 326.6 mm, at the same time, monastic buildings used the Carolingian foot of 340 mm. The procedure for verification of the foot as described in the 16th century by Jacob Koebel in his book Geometrei, the measures of Iron Age Britain are uncertain and proposed reconstructions such as the Megalithic Yard are controversial. Later Welsh legend credited Dyfnwal Moelmud with the establishment of their units, the Belgic or North German foot of 335 mm was introduced to England either by the Belgic Celts during their invasions prior to the Romans or by the Anglo-Saxons in the 5th & 6th century

9.
Inch
–
The inch is a unit of length in the imperial and United States customary systems of measurement now formally equal to 1⁄36 yard but usually understood as 1⁄12 of a foot. Derived from the Roman uncia, inch is also used to translate related units in other measurement systems. The English word inch was a borrowing from Latin uncia not present in other Germanic languages. The vowel change from Latin /u/ to English /ɪ/ is known as umlaut, the consonant change from the Latin /k/ to English /tʃ/ or /ʃ/ is palatalisation. Both were features of Old English phonology, inch is cognate with ounce, whose separate pronunciation and spelling reflect its reborrowing in Middle English from Anglo-Norman unce and ounce. In many other European languages, the word for inch is the same as or derived from the word for thumb, the inch is a commonly used customary unit of length in the United States, Canada, and the United Kingdom. It is also used in Japan for electronic parts, especially display screens, for example, three feet two inches can be written as 3′ 2″. Paragraph LXVII sets out the fine for wounds of various depths, one inch, one shilling, an Anglo-Saxon unit of length was the barleycorn. After 1066,1 inch was equal to 3 barleycorns, which continued to be its legal definition for several centuries, similar definitions are recorded in both English and Welsh medieval law tracts. One, dating from the first half of the 10th century, is contained in the Laws of Hywel Dda which superseded those of Dyfnwal, both definitions, as recorded in Ancient Laws and Institutes of Wales, are that three lengths of a barleycorn is the inch. However, the oldest surviving manuscripts date from the early 14th century, john Bouvier similarly recorded in his 1843 law dictionary that the barleycorn was the fundamental measure. He noted that this process would not perfectly recover the standard, before the adoption of the international yard and pound, various definitions were in use. In the United Kingdom and most countries of the British Commonwealth, the United States adopted the conversion factor 1 metre =39.37 inches by an act in 1866. In 1930, the British Standards Institution adopted an inch of exactly 25.4 mm, the American Standards Association followed suit in 1933. By 1935, industry in 16 countries had adopted the industrial inch as it came to be known, in 1946, the Commonwealth Science Congress recommended a yard of exactly 0.9144 metres for adoption throughout the British Commonwealth. This was adopted by Canada in 1951, the United States on 1 July 1959, Australia in 1961, effective 1 January 1964, and the United Kingdom in 1963, effective on 1 January 1964. The new standards gave an inch of exactly 25.4 mm,1.7 millionths of a longer than the old imperial inch and 2 millionths of an inch shorter than the old US inch. The United States retains the 1/39. 37-metre definition for survey purposes and this is approximately 1/8-inch in a mile

10.
Units of measurement
–
A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same quantity. Any other value of quantity can be expressed as a simple multiple of the unit of measurement. For example, length is a physical quantity, the metre is a unit of length that represents a definite predetermined length. When we say 10 metres, we actually mean 10 times the definite predetermined length called metre, the definition, agreement, and practical use of units of measurement have played a crucial role in human endeavour from early ages up to this day. Different systems of units used to be very common, now there is a global standard, the International System of Units, the modern form of the metric system. In trade, weights and measures is often a subject of regulation, to ensure fairness. The International Bureau of Weights and Measures is tasked with ensuring worldwide uniformity of measurements, metrology is the science for developing nationally and internationally accepted units of weights and measures. In physics and metrology, units are standards for measurement of quantities that need clear definitions to be useful. Reproducibility of experimental results is central to the scientific method, a standard system of units facilitates this. Scientific systems of units are a refinement of the concept of weights, science, medicine, and engineering often use larger and smaller units of measurement than those used in everyday life and indicate them more precisely. The judicious selection of the units of measurement can aid researchers in problem solving, in the social sciences, there are no standard units of measurement and the theory and practice of measurement is studied in psychometrics and the theory of conjoint measurement. A unit of measurement is a quantity of a physical property. Units of measurement were among the earliest tools invented by humans, primitive societies needed rudimentary measures for many tasks, constructing dwellings of an appropriate size and shape, fashioning clothing, or bartering food or raw materials. Weights and measures are mentioned in the Bible and it is a commandment to be honest and have fair measures. As of the 21st Century, multiple unit systems are used all over the world such as the United States Customary System, the British Customary System, however, the United States is the only industrialized country that has not yet completely converted to the Metric System. The systematic effort to develop an acceptable system of units dates back to 1790 when the French National Assembly charged the French Academy of Sciences to come up such a unit system. After this treaty was signed, a General Conference of Weights, the CGPM produced the current SI system which was adopted in 1954 at the 10th conference of weights and measures. Currently, the United States is a society which uses both the SI system and the US Customary system

11.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version

12.
SI base unit
–
The International System of Units defines seven units of measure as a basic set from which all other SI units can be derived. The SI base units form a set of mutually independent dimensions as required by dimensional analysis commonly employed in science, thus, the kelvin, named after Lord Kelvin, has the symbol K and the ampere, named after André-Marie Ampère, has the symbol A. Many other units, such as the litre, are not part of the SI. The definitions of the units have been modified several times since the Metre Convention in 1875. Since the redefinition of the metre in 1960, the kilogram is the unit that is directly defined in terms of a physical artifact. However, the mole, the ampere, and the candela are linked through their definitions to the mass of the platinum–iridium cylinder stored in a vault near Paris. It has long been an objective in metrology to define the kilogram in terms of a fundamental constant, two possibilities have attracted particular attention, the Planck constant and the Avogadro constant. The 23rd CGPM decided to postpone any formal change until the next General Conference in 2011

13.
Litre
–
The litre or liter is an SI accepted metric system unit of volume equal to 1 cubic decimetre,1,000 cubic centimetres or 1/1,000 cubic metre. A cubic decimetre occupies a volume of 10×10×10 centimetres and is equal to one-thousandth of a cubic metre. The original French metric system used the litre as a base unit. The word litre is derived from an older French unit, the litron, whose name came from Greek — where it was a unit of weight, not volume — via Latin, and which equalled approximately 0.831 litres. The litre was also used in subsequent versions of the metric system and is accepted for use with the SI. The spelling used by the International Bureau of Weights and Measures is litre, the less common spelling of liter is more predominantly used in American English. One litre of water has a mass of almost exactly one kilogram. Subsequent redefinitions of the metre and kilogram mean that this relationship is no longer exact, a litre is defined as a special name for a cubic decimetre or 10 centimetres ×10 centimetres ×10 centimetres. Hence 1 L ≡0.001 m3 ≡1000 cm3, from 1901 to 1964, the litre was defined as the volume of one kilogram of pure water at maximum density and standard pressure. The kilogram was in turn specified as the mass of a platinum/iridium cylinder held at Sèvres in France and was intended to be of the mass as the 1 litre of water referred to above. It was subsequently discovered that the cylinder was around 28 parts per million too large and thus, during this time, additionally, the mass-volume relationship of water depends on temperature, pressure, purity and isotopic uniformity. In 1964, the definition relating the litre to mass was abandoned in favour of the current one, although the litre is not an official SI unit, it is accepted by the CGPM for use with the SI. CGPM defines the litre and its acceptable symbols, a litre is equal in volume to the millistere, an obsolete non-SI metric unit customarily used for dry measure. The litre is often used in some calculated measurements, such as density. One litre of water has a mass of almost exactly one kilogram when measured at its maximal density, similarly,1 millilitre of water has a mass of about 1 g,1,000 litres of water has a mass of about 1,000 kg. It is now known that density of water depends on the isotopic ratios of the oxygen and hydrogen atoms in a particular sample. The litre, though not an official SI unit, may be used with SI prefixes, the most commonly used derived unit is the millilitre, defined as one-thousandth of a litre, and also often referred to by the SI derived unit name cubic centimetre. It is a commonly used measure, especially in medicine and cooking, Other units may be found in the table below, where the more often used terms are in bold

14.
Kilogram
–
The kilogram or kilogramme is the base unit of mass in the International System of Units and is defined as being equal to the mass of the International Prototype of the Kilogram. The avoirdupois pound, used in both the imperial and US customary systems, is defined as exactly 0.45359237 kg, making one kilogram approximately equal to 2.2046 avoirdupois pounds. Other traditional units of weight and mass around the world are also defined in terms of the kilogram, the gram, 1/1000 of a kilogram, was provisionally defined in 1795 as the mass of one cubic centimeter of water at the melting point of ice. The final kilogram, manufactured as a prototype in 1799 and from which the IPK was derived in 1875, had an equal to the mass of 1 dm3 of water at its maximum density. The kilogram is the only SI base unit with an SI prefix as part of its name and it is also the only SI unit that is still directly defined by an artifact rather than a fundamental physical property that can be reproduced in different laboratories. Three other base units and 17 derived units in the SI system are defined relative to the kilogram, only 8 other units do not require the kilogram in their definition, temperature, time and frequency, length, and angle. At its 2011 meeting, the CGPM agreed in principle that the kilogram should be redefined in terms of the Planck constant, the decision was originally deferred until 2014, in 2014 it was deferred again until the next meeting. There are currently several different proposals for the redefinition, these are described in the Proposed Future Definitions section below, the International Prototype Kilogram is rarely used or handled. In the decree of 1795, the term gramme thus replaced gravet, the French spelling was adopted in the United Kingdom when the word was used for the first time in English in 1797, with the spelling kilogram being adopted in the United States. In the United Kingdom both spellings are used, with kilogram having become by far the more common, UK law regulating the units to be used when trading by weight or measure does not prevent the use of either spelling. In the 19th century the French word kilo, a shortening of kilogramme, was imported into the English language where it has used to mean both kilogram and kilometer. In 1935 this was adopted by the IEC as the Giorgi system, now known as MKS system. In 1948 the CGPM commissioned the CIPM to make recommendations for a practical system of units of measurement. This led to the launch of SI in 1960 and the subsequent publication of the SI Brochure, the kilogram is a unit of mass, a property which corresponds to the common perception of how heavy an object is. Mass is a property, that is, it is related to the tendency of an object at rest to remain at rest, or if in motion to remain in motion at a constant velocity. Accordingly, for astronauts in microgravity, no effort is required to hold objects off the cabin floor, they are weightless. However, since objects in microgravity still retain their mass and inertia, the ratio of the force of gravity on the two objects, measured by the scale, is equal to the ratio of their masses. On April 7,1795, the gram was decreed in France to be the weight of a volume of pure water equal to the cube of the hundredth part of the metre

15.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used

16.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe

17.
Conversion of units
–
Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors. The process of conversion depends on the situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards, engineering judgment may include such factors as, The precision and accuracy of measurement and the associated uncertainty of measurement. The statistical confidence interval or tolerance interval of the initial measurement, the number of significant figures of the measurement. The intended use of the measurement including the engineering tolerances, historical definitions of the units and their derivatives used in old measurements, e. g. international foot vs. Some conversions from one system of units to another need to be exact and this is sometimes called soft conversion. It does not involve changing the configuration of the item being measured. By contrast, a conversion or an adaptive conversion may not be exactly equivalent. It changes the measurement to convenient and workable numbers and units in the new system and it sometimes involves a slightly different configuration, or size substitution, of the item. Nominal values are allowed and used. A conversion factor is used to change the units of a quantity without changing its value. The unity bracket method of unit conversion consists of a fraction in which the denominator is equal to the numerator, because of the identity property of multiplication, the value of a number will not change as long as it is multiplied by one. Also, if the numerator and denominator of a fraction are equal to each other, so as long as the numerator and denominator of the fraction are equivalent, they will not affect the value of the measured quantity. There are many applications that offer the thousands of the various units with conversions. For example, the free software movement offers a command line utility GNU units for Linux and this article gives lists of conversion factors for each of a number of physical quantities, which are listed in the index. For each physical quantity, a number of different units are shown, Conversion between units in the metric system can be discerned by their prefixes and are thus not listed in this article. Exceptions are made if the unit is known by another name. Within each table, the units are listed alphabetically, and the SI units are highlighted, notes, See Weight for detail of mass/weight distinction and conversion

18.
Picometre
–
The picometre or picometer is a unit of length in the metric system, equal to 1×10−12 m, or one trillionth of a metre, which is the SI base unit of length. The picometre is one thousandth of a nanometre, one millionth of a micrometre, the symbol µµ was once used for it. It is also one hundredth of an angstrom, a recognised unit of length. The picometres length is of an such that its application is almost entirely confined to particle physics, quantum physics, chemistry. Atoms are between 62 and 520 pm in diameter, and the length of a carbon-carbon single bond is 154 pm. Smaller units still may be used to describe smaller particles, such as hadrons and the upper limits of possible size for fermion point particles

19.
Hectometre
–
The hectometre or hectometer is an uncommonly used unit of length in the metric system, equal to one hundred metres. It derives from the Greek word ekato, meaning hundred, a soccer field is approximately 1 hectometre in length. The hectare, a metric unit for land area, is equal to one square hectometre

20.
Kilometre
–
The kilometre or kilometer is a unit of length in the metric system, equal to one thousand metres. K is occasionally used in some English-speaking countries as an alternative for the kilometre in colloquial writing. A slang term for the kilometre in the US military is klick, there are two common pronunciations for the word. It is generally preferred by the British Broadcasting Corporation and the Australian Broadcasting Corporation, many scientists and other users, particularly in countries where the metric system is not widely used, use the pronunciation with stress on the second syllable. The latter pronunciation follows the pattern used for the names of measuring instruments. The problem with this reasoning, however, is that the meter in those usages refers to a measuring device. The contrast is more obvious in countries using the British rather than American spelling of the word metre. When Australia introduced the system in 1975, the first pronunciation was declared official by the governments Metric Conversion Board. However, the Australian prime minister at the time, Gough Whitlam, by the 8 May 1790 decree, the Constituent assembly ordered the French Academy of Sciences to develop a new measurement system. In August 1793, the French National Convention decreed the metre as the length measurement system in the French Republic. The first name of the kilometre was Millaire, although the metre was formally defined in 1799, the myriametre was preferred to the kilometre for everyday use. The term myriamètre appeared a number of times in the text of Develeys book Physique dEmile, ou, Principes de la de la nature. French maps published in 1835 had scales showing myriametres and lieues de Poste, the Dutch, on the other hand, adopted the kilometre in 1817 but gave it the local name of the mijl. It was only in 1867 that the term became the only official unit of measure in the Netherlands to represent 1000 metres. In the US, the National Highway System Designation Act of 1995 prohibits the use of highway funds to convert existing signs or purchase new signs with metric units. Although the State DOTs had the option of using metric measurements or dual units, all of them abandoned metric measurements, the Manual on Uniform Traffic Control Devices since 2000 is published in both metric and American Customary Units. Some sporting disciplines feature 1000 m races in major events, but in other disciplines, even though records are catalogued

21.
Standardization
–
It can also facilitate commoditization of formerly custom processes. This view includes the case of spontaneous standardization processes, to de facto standards. Standard weights and measures were developed by the Indus Valley Civilisation, weights existed in multiples of a standard weight and in categories. Technical standardisation enabled gauging devices to be used in angular measurement and measurement for construction. Uniform units of length were used in the planning of such as Lothal, Surkotada, Kalibangan, Dolavira, Harappa. The weights and measures of the Indus civilisation also reached Persia and Central Asia, Standardisation is also related to Processes. In view of large variations in units related to Civil, Electrical and other Engineering streams, engineers united to overcome the situation and this association later on gave birth to ISO in 1950. ISO stands for International Organisation for Standardisation and this voluntary organisation is solely dedicated to standardisation and makes standards related to it. Certification as per ISO norms is popular all across world, henry Maudslay developed the first industrially practical screw-cutting lathe in 1800. This allowed for the standardisation of screw thread sizes for the first time, before this, screw threads were usually made by chipping and filing. Nuts were rare, metal screws, when made at all, were usually for use in wood, metal bolts passing through wood framing to a metal fastening on the other side were usually fastened in non-threaded ways. This was an advance in workshop technology. Maudslays work, as well as the contributions of other engineers, accomplished a modest amount of industry standardization, joseph Whitworths screw thread measurements were adopted as the first national standard by companies around the country in 1841. It came to be known as the British Standard Whitworth, and was adopted in other countries. This new standard specified a 55° thread angle and a depth of 0. 640327p and a radius of 0. 137329p. The thread pitch increased with diameter in steps specified on a chart, an example of the use of the Whitworth thread is the Royal Navys Crimean War gunboats. These were the first instance of mass-production techniques being applied to marine engineering, American Unified Coarse was originally based on almost the same imperial fractions. The Unified thread angle is 60° and has flattened crests, thread pitch is the same in both systems except that the thread pitch for the 1⁄2 in bolt is 12 threads per inch in BSW versus 13 tpi in the UNC

22.
Measurement
–
Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. The scope and application of a measurement is dependent on the context, however, in other fields such as statistics as well as the social and behavioral sciences, measurements can have multiple levels, which would include nominal, ordinal, interval, and ratio scales. Measurement is a cornerstone of trade, science, technology, historically, many measurement systems existed for the varied fields of human existence to facilitate comparisons in these fields. Often these were achieved by local agreements between trading partners or collaborators, since the 18th century, developments progressed towards unifying, widely accepted standards that resulted in the modern International System of Units. This system reduces all physical measurements to a combination of seven base units. The science of measurement is pursued in the field of metrology, the measurement of a property may be categorized by the following criteria, type, magnitude, unit, and uncertainty. They enable unambiguous comparisons between measurements, the type or level of measurement is a taxonomy for the methodological character of a comparison. For example, two states of a property may be compared by ratio, difference, or ordinal preference, the type is commonly not explicitly expressed, but implicit in the definition of a measurement procedure. The magnitude is the value of the characterization, usually obtained with a suitably chosen measuring instrument. A unit assigns a mathematical weighting factor to the magnitude that is derived as a ratio to the property of a used as standard or a natural physical quantity. An uncertainty represents the random and systemic errors of the measurement procedure, errors are evaluated by methodically repeating measurements and considering the accuracy and precision of the measuring instrument. Measurements most commonly use the International System of Units as a comparison framework, the system defines seven fundamental units, kilogram, metre, candela, second, ampere, kelvin, and mole. Instead, the measurement unit can only ever change through increased accuracy in determining the value of the constant it is tied to and this directly influenced the Michelson–Morley experiment, Michelson and Morley cite Peirce, and improve on his method. With the exception of a few fundamental quantum constants, units of measurement are derived from historical agreements, nothing inherent in nature dictates that an inch has to be a certain length, nor that a mile is a better measure of distance than a kilometre. Over the course of history, however, first for convenience and then for necessity. Laws regulating measurement were originally developed to prevent fraud in commerce.9144 metres, in the United States, the National Institute of Standards and Technology, a division of the United States Department of Commerce, regulates commercial measurements. Before SI units were adopted around the world, the British systems of English units and later imperial units were used in Britain, the Commonwealth. The system came to be known as U. S. customary units in the United States and is still in use there and in a few Caribbean countries. S