1.
Hemicube (geometry)
–
In abstract geometry, a hemicube is an abstract regular polyhedron, containing half the faces of a cube. It has three faces, six edges, and four vertices. From the point of view of theory the skeleton is a tetrahedral graph. The hemicube should not be confused with the demicube – the hemicube is a projective polyhedron, while the demicube is an ordinary polyhedron. While they both have half the vertices of a cube, the hemicube is a quotient of the cube, the hemicube is the Petrie dual to the regular tetrahedron, with the four vertices, six edges of the tetrahedron, and three Petrie polygon quadrilateral faces. The faces can be seen as red, green, and blue edge colorings in the graph, hemi-octahedron hemi-dodecahedron hemi-icosahedron McMullen, Peter, Schulte, Egon. Projective Regular Polytopes, Abstract Regular Polytopes, Cambridge University Press, pp. 162–165, ISBN 0-521-81496-0 The hemicube
2.
Alternation (geometry)
–
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices. Coxeter labels an alternation by a prefixed by an h, standing for hemi or half, because alternation reduce all polygon faces to half as many sides, it can only be applied for polytopes with all even-sided faces. An alternated square face becomes a digon, and being degenerate, is reduced to a single edge. More generally any vertex-uniform polyhedron or tiling with a configuration consisting of all even-numbered elements can be alternated. For example, the alternation a vertex figure with 2a. 2b. 2c is a.3. b.3. c.3 where the three is the number of elements in this vertex figure. A special case is square faces whose order divide in half into degenerate digons, a snub can be seen as an alternation of a truncated regular or truncated quasiregular polyhedron. In general a polyhedron can be snubbed if its truncation has only even-sided faces, all truncated rectified polyhedra can be snubbed, not just from regular polyhedra. The snub square antiprism is an example of a general snub and this alternation operation applies to higher-dimensional polytopes and honeycombs as well, but in general most of the results of this operation will not be uniform. The voids created by the vertices will not in general create uniform facets. Examples, Honeycombs An alternated cubic honeycomb is the tetrahedral-octahedral honeycomb, an alternated hexagonal prismatic honeycomb is the gyrated alternated cubic honeycomb. 4-polytope An alternated truncated 24-cell is the snub 24-cell, 4-honeycombs, An alternated truncated 24-cell honeycomb is the snub 24-cell honeycomb. A hypercube can always be alternated into a uniform demihypercube, cube → Tetrahedron → Tesseract → 16-cell → Penteract → demipenteract Hexeract → demihexeract. Coxeter also used the operator a, which contains both halves, so retains the original symmetry, for even-sided regular polyhedra, a represents a compound polyhedron with two opposite copies of h. For odd-sided, greater than 3, regular polyhedra a, becomes a star polyhedron, Norman Johnson extended the use of the altered operator a, b for blended, and c for converted, as, and respectively. The compound polyhedron, stellated octahedron can be represented by a, the star-polyhedron, small ditrigonal icosidodecahedron, can be represented by a, and. Here all the pentagons have been alternated into pentagrams, and triangles have been inserted to take up the free edges. A similar operation can truncate alternate vertices, rather than just removing them, below is a set of polyhedra that can be generated from the Catalan solids. These have two types of vertices which can be alternately truncated, truncating the higher order vertices and both vertex types produce these forms, Conway polyhedral notation Wythoff construction Coxeter, H. S. M
3.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
4.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space
5.
Polytopes
–
In elementary geometry, a polytope is a geometric object with flat sides, and may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. Polytopes in more than three dimensions were first discovered by Ludwig Schläfli, the German term polytop was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as polytope by Alicia Boole Stott. The term polytope is nowadays a broad term that covers a class of objects. Many of these definitions are not equivalent, resulting in different sets of objects being called polytopes and they represent different approaches to generalizing the convex polytopes to include other objects with similar properties. In this approach, a polytope may be regarded as a tessellation or decomposition of some given manifold, an example of this approach defines a polytope as a set of points that admits a simplicial decomposition. However this definition does not allow star polytopes with interior structures, the discovery of star polyhedra and other unusual constructions led to the idea of a polyhedron as a bounding surface, ignoring its interior. A polyhedron is understood as a surface whose faces are polygons, a 4-polytope as a hypersurface whose facets are polyhedra and this approach is used for example in the theory of abstract polytopes. In certain fields of mathematics, the terms polytope and polyhedron are used in a different sense and this terminology is typically confined to polytopes and polyhedra that are convex. A polytope comprises elements of different dimensionality such as vertices, edges, faces, cells, terminology for these is not fully consistent across different authors. For example, some authors use face to refer to an -dimensional element while others use face to denote a 2-face specifically, authors may use j-face or j-facet to indicate an element of j dimensions. Some use edge to refer to a ridge, while H. S. M. Coxeter uses cell to denote an -dimensional element, the terms adopted in this article are given in the table below, An n-dimensional polytope is bounded by a number of -dimensional facets. These facets are themselves polytopes, whose facets are -dimensional ridges of the original polytope, Every ridge arises as the intersection of two facets. Ridges are once again polytopes whose facets give rise to -dimensional boundaries of the original polytope and these bounding sub-polytopes may be referred to as faces, or specifically j-dimensional faces or j-faces. A 0-dimensional face is called a vertex, and consists of a single point, a 1-dimensional face is called an edge, and consists of a line segment. A 2-dimensional face consists of a polygon, and a 3-dimensional face, sometimes called a cell, the convex polytopes are the simplest kind of polytopes, and form the basis for several different generalizations of the concept of polytopes. A convex polytope is defined as the intersection of a set of half-spaces. This definition allows a polytope to be neither bounded nor finite, Polytopes are defined in this way, e. g. in linear programming
6.
Hypercube
–
In geometry, a hypercube is an n-dimensional analogue of a square and a cube. A unit hypercubes longest diagonal in n-dimensions is equal to n, an n-dimensional hypercube is also called an n-cube or an n-dimensional cube. The term measure polytope is also used, notably in the work of H. S. M. Coxeter, the hypercube is the special case of a hyperrectangle. A unit hypercube is a hypercube whose side has one unit. Often, the hypercube whose corners are the 2n points in Rn with coordinates equal to 0 or 1 is called the unit hypercube, a hypercube can be defined by increasing the numbers of dimensions of a shape,0 – A point is a hypercube of dimension zero. 1 – If one moves this point one unit length, it will sweep out a line segment,2 – If one moves this line segment its length in a perpendicular direction from itself, it sweeps out a 2-dimensional square. 3 – If one moves the square one unit length in the perpendicular to the plane it lies on. 4 – If one moves the cube one unit length into the fourth dimension and this can be generalized to any number of dimensions. The 1-skeleton of a hypercube is a hypercube graph, a unit hypercube of n dimensions is the convex hull of the points given by all sign permutations of the Cartesian coordinates. It has a length of 1 and an n-dimensional volume of 1. An n-dimensional hypercube is also regarded as the convex hull of all sign permutations of the coordinates. This form is chosen due to ease of writing out the coordinates. Its edge length is 2, and its volume is 2n. Every n-cube of n >0 is composed of elements, or n-cubes of a dimension, on the -dimensional surface on the parent hypercube. A side is any element of -dimension of the parent hypercube, a hypercube of dimension n has 2n sides. The number of vertices of a hypercube is 2 n, the number of m-dimensional hypercubes on the boundary of an n-cube is E m, n =2 n − m, where = n. m. and n. denotes the factorial of n. For example, the boundary of a 4-cube contains 8 cubes,24 squares,32 lines and 16 vertices and this identity can be proved by combinatorial arguments, each of the 2 n vertices defines a vertex in a m-dimensional boundary. There are ways of choosing which lines that defines the subspace that the boundary is in, but, each side is counted 2 m times since it has that many vertices, we need to divide with this number
7.
16-cell
–
In four-dimensional geometry, a 16-cell is a regular convex 4-polytope. It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century and it is also called C16, hexadecachoron, or hexdecahedroid. It is a part of an family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the tesseract, conways name for a cross-polytope is orthoplex, for orthant complex. The 16-cell has 16 cells as the tesseract has 16 vertices and it is bounded by 16 cells, all of which are regular tetrahedra. It has 32 triangular faces,24 edges, and 8 vertices, the 24 edges bound 6 squares lying in the 6 coordinate planes. The eight vertices of the 16-cell are, all vertices are connected by edges except opposite pairs. The Schläfli symbol of the 16-cell is and its vertex figure is a regular octahedron. There are 8 tetrahedra,12 triangles, and 6 edges meeting at every vertex and its edge figure is a square. There are 4 tetrahedra and 4 triangles meeting at every edge, the 16-cell can be decomposed into two similar disjoint circular chains of eight tetrahedrons each, four edges long. Each chain, when stretched out straight, forms a Boerdijk–Coxeter helix and this decomposition can be seen in a 4-4 duoantiprism construction of the 16-cell, or, Schläfli symbol ⨂ or ss, symmetry, order 64. The 16-cell can be dissected into two octahedral pyramids, which share a new octahedron base through the 16-cell center, one can tessellate 4-dimensional Euclidean space by regular 16-cells. This is called the 16-cell honeycomb and has Schläfli symbol, hence, the 16-cell has a dihedral angle of 120°. The dual tessellation, 24-cell honeycomb, is made of by regular 24-cells, together with the tesseractic honeycomb, these are the only three regular tessellations of R4. Each 16-cell has 16 neighbors with which it shares a tetrahedron,24 neighbors with which it only an edge. Twenty-four 16-cells meet at any vertex in this tessellation. A 16-cell can constructed from two Boerdijk–Coxeter helixes of eight chained tetrahedra, each folded into a 4-dimensional ring, the 16 triangle faces can be seen in a 2D net within a triangular tiling, with 6 triangles around every vertex. The purple edges represent the Petrie polygon of the 16-cell, the cell-first parallel projection of the 16-cell into 3-space has a cubical envelope
8.
5-demicube
–
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube with alternated vertices truncated. It was discovered by Thorold Gosset, since it was the only semiregular 5-polytope, he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2,1 and 1 with a ringed node on one of the short branches, and Schläfli symbol or. It exists in the k21 polytope family as 121 with the Gosset polytopes,221,321, the graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead. Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 2√2 are alternate halves of the penteract and it is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family. There are 23 Uniform 5-polytopes that can be constructed from the D5 symmetry of the demipenteract,8 of which are unique to this family, the 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope, Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. In Coxeters notation the 5-demicube is given the symbol 121, T. Gosset, On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan,1900 H. S. M. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 Klitzing, Richard. 5D uniform polytopes x3o3o *b3o3o - hin, archived from the original on 4 February 2007
9.
Uniform polytope
–
A uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons and this is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures are allowed, which expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs of Euclidean, nearly every uniform polytope can be generated by a Wythoff construction, and represented by a Coxeter diagram. Notable exceptions include the antiprism in four dimensions. Equivalently, the Wythoffian polytopes can be generated by applying basic operations to the regular polytopes in that dimension and this approach was first used by Johannes Kepler, and is the basis of the Conway polyhedron notation. Regular n-polytopes have n orders of rectification, the zeroth rectification is the original form. The th rectification is the dual, an extended Schläfli symbol can be used for representing rectified forms, with a single subscript, k-th rectification = tk = kr. Truncation operations that can be applied to regular n-polytopes in any combination, the resulting Coxeter diagram has two ringed nodes, and the operation is named for the distance between them. Truncation cuts vertices, cantellation cuts edges, runcination cuts faces, each higher operation also cuts lower ones too, so a cantellation also truncates vertices. T0,1 or t, Truncation - applied to polygons, a truncation removes vertices, and inserts a new facet in place of each former vertex. Faces are truncated, doubling their edges and it can be seen as rectifying its rectification. A cantellation truncates both vertices and edges and replaces them with new facets, cells are replaced by topologically expanded copies of themselves. There are higher cantellations also, bicantellation t1,3 or r2r, tricantellation t2,4 or r3r, quadricantellation t3,5 or r4r, etc. t0,1,2 or tr, Cantitruncation - applied to polyhedra and higher. It can be seen as a truncation of its rectification, a cantitruncation truncates both vertices and edges and replaces them with new facets. Cells are replaced by topologically expanded copies of themselves, runcination truncates vertices, edges, and faces, replacing them each with new facets. 4-faces are replaced by topologically expanded copies of themselves, There are higher runcinations also, biruncination t1,4, triruncination t2,5, etc. t0,4 or 2r2r, Sterication - applied to Uniform 5-polytopes and higher. It can be seen as birectifying its birectification, Sterication truncates vertices, edges, faces, and cells, replacing each with new facets
10.
Halved cube graph
–
That is, it is the half-square of the hypercube. This connectivity pattern produces two isomorphic graphs, disconnected from other, each of which is the halved cube graph. The construction of the cube graph can be reformulated in terms of binary numbers. The vertices of a hypercube may be labeled by numbers in such a way that two vertices are adjacent exactly when they differ in a single bit. The halved cube graph 12 Q3 of order 3 is the complete graph K4, the halved cube graph 12 Q4 of order 4 is K2,2,2,2, the graph of the four-dimensional regular polytope, the 16-cell. The halved cube graph 12 Q5 of order five is sometimes known as the Clebsch graph and it exists in the 5-dimensional uniform 5-polytope, the 5-demicube. Because it is the half of a distance-regular graph, the halved cube graph is itself distance-regular. And because it contains a hypercube as a subgraph, it inherits from the hypercube all monotone graph properties. As with the graphs, and their isometric subgraphs the partial cubes. For every halved cube graph of order five or more, it is possible to color the vertices with two colors, in such a way that the colored graph has no nontrivial symmetries. For the graphs of order three and four, four colors are needed to eliminate all symmetries, the two graphs shown are symmetric Dn and Bn Petrie polygon projections of the related polytope which can include overlapping edges and vertices. Weisstein, Eric W. Halved Cube Graph