Jmol
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool, or for research e.g. in chemistry and biochemistry. It is written in the programming language Java, so it can run on the operating systems Windows, macOS, Unix, if Java is installed, it is free and open-source software released under a GNU Lesser General Public License version 2.0. A standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways. For example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a wide range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile, Chemical Markup Language. There is a JavaScript-only version, JSmol, that can be used on computers with no Java.
The Jmol applet, among other abilities, offers an alternative to the Chime plug-in, no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, the Sculpt mode. Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS 9. Jmol operates on a wide variety of platforms. For example, Jmol is functional in Mozilla Firefox, Internet Explorer, Google Chrome, Safari. Chemistry Development Kit Comparison of software for molecular mechanics modeling Jmol extension for MediaWiki List of molecular graphics systems Molecular graphics Molecule editor Proteopedia PyMOL SAMSON Official website Wiki with listings of websites and moodles Willighagen, Egon. "Fast and Scriptable Molecular Graphics in Web Browsers without Java3D". Doi:10.1038/npre.2007.50.1
Simplified molecular-input line-entry system
The simplified molecular-input line-entry system is a specification in the form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules; the original SMILES specification was initiated in the 1980s. It has since been extended. In 2007, an open standard called. Other linear notations include the Wiswesser line notation, ROSDAL, SYBYL Line Notation; the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. Acknowledged for their parts in the early development were "Gilman Veith and Rose Russo and Albert Leo and Corwin Hansch for supporting the work, Arthur Weininger and Jeremy Scofield for assistance in programming the system." The Environmental Protection Agency funded the initial project to develop SMILES. It has since been modified and extended by others, most notably by Daylight Chemical Information Systems.
In 2007, an open standard called "OpenSMILES" was developed by the Blue Obelisk open-source chemistry community. Other'linear' notations include the Wiswesser Line Notation, ROSDAL and SLN. In July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is considered to have the advantage of being more human-readable than InChI; the term SMILES refers to a line notation for encoding molecular structures and specific instances should be called SMILES strings. However, the term SMILES is commonly used to refer to both a single SMILES string and a number of SMILES strings; the terms "canonical" and "isomeric" can lead to some confusion when applied to SMILES. The terms are not mutually exclusive. A number of valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol. Algorithms have been developed to generate the same SMILES string for a given molecule; this SMILES is unique for each structure, although dependent on the canonicalization algorithm used to generate it, is termed the canonical SMILES.
These algorithms first convert the SMILES to an internal representation of the molecular structure. Various algorithms for generating canonical SMILES have been developed and include those by Daylight Chemical Information Systems, OpenEye Scientific Software, MEDIT, Chemical Computing Group, MolSoft LLC, the Chemistry Development Kit. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database; the original paper that described the CANGEN algorithm claimed to generate unique SMILES strings for graphs representing molecules, but the algorithm fails for a number of simple cases and cannot be considered a correct method for representing a graph canonically. There is no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, double bond geometry; these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES.
A notable feature of these rules is. The term isomeric SMILES is applied to SMILES in which isotopes are specified. In terms of a graph-based computational procedure, SMILES is a string obtained by printing the symbol nodes encountered in a depth-first tree traversal of a chemical graph; the chemical graph is first trimmed to remove hydrogen atoms and cycles are broken to turn it into a spanning tree. Where cycles have been broken, numeric suffix labels are included to indicate the connected nodes. Parentheses are used to indicate points of branching on the tree; the resultant SMILES form depends on the choices: of the bonds chosen to break cycles, of the starting atom used for the depth-first traversal, of the order in which branches are listed when encountered. Atoms are represented by the standard abbreviation of the chemical elements, in square brackets, such as for gold. Brackets may be omitted in the common case of atoms which: are in the "organic subset" of B, C, N, O, P, S, F, Cl, Br, or I, have no formal charge, have the number of hydrogens attached implied by the SMILES valence model, are the normal isotopes, are not chiral centers.
All other elements must be enclosed in brackets, have charges and hydrogens shown explicitly. For instance, the SMILES for water may be written as either O or. Hydrogen may be written as a separate atom; when brackets are used, the symbol H is added if the atom in brackets is bonded to one or more hydrogen, followed by the number of hydrogen atoms if greater than 1 by the sign + for a positive charge or by - for a negative charge. For example, for ammonium. If there is more than one charge, it is written as digit.
Regulation of therapeutic goods
The regulation of therapeutic goods, drugs and therapeutic devices, varies by jurisdiction. In some countries, such as the United States, they are regulated at the national level by a single agency. In other jurisdictions they are regulated at the state level, or at both state and national levels by various bodies, as is the case in Australia; the role of therapeutic goods regulation is designed to protect the health and safety of the population. Regulation is aimed at ensuring the safety and efficacy of the therapeutic goods which are covered under the scope of the regulation. In most jurisdictions, therapeutic goods must be registered. There is some degree of restriction of the availability of certain therapeutic goods depending on their risk to consumers. Modern drug regulation has historical roots in the response to the proliferation of universal antidotes which appeared in the wake of Mithridates' death. Mithridates had brought together physicians and shamans to concoct a potion that would make him immune to poisons.
Following his death, the Romans became keen on further developing the Mithridates potion's recipe. Mithridatium re-entered western society through multiple means; the first was through the Leechbook of the Bald, written somewhere between 900 and 950, which contained a formula for various remedies, including for a theriac. Additionally, theriac became a commercial good traded throughout Europe based on the works of Greek and Roman physicians; the resulting proliferation of various recipes needed to be curtailed in order to ensure that people were not passing off fake antidotes, which led to the development of government involvement and regulation. Additionally, the creation of these concoctions took on ritualistic form and were created in public and the process was observed and recorded, it was believed that if the concoction proved unsuccessful, it was due to the apothecaries’ process of making them and they could be held accountable because of the public nature of the creation. In the 9th century, many Muslim countries established an office of the hisba, which in addition to regulating compliance to Islamic principles and values took on the role of regulating other aspects of social and economic life, including the regulation of medicines.
Inspectors were appointed to employ oversight on those who were involved in the process of medicine creation and were given a lot of leigh weigh to ensure compliance and punishments were stringent. The first official'act', the'Apothecary Wares and Stuffs' Act was passed in 1540 by Henry VIII and set the foundation for others. Through this act, he encouraged physicians in his College of Physicians to appoint four people dedicated to inspecting what was being sold in apothecary shops. In conjunction with this first piece of legislation, there was an emergence of standard formulas for the creation of certain ‘drugs’ and ‘antidotes’ through Pharmacopoeias which first appeared in the form of a decree from Frederick II of Sicily in 1240 to use consistent and standard formulas; the first modern pharmacopoeias were the Florence Pharmacopoeia published in 1498, the Spanish Pharmacopoeia published in 1581 and the London Pharmacopoeia published in 1618. In the United States, regulation of drugs was a state right, as opposed to federal right.
But with the increase in fraudulent practices due to private incentives to maximize profits and poor enforcement of state laws, increased the need for stronger federal regulation. President Roosevelt signed the Federal Food and Drug Act in 1906 which established stricter standards. A 1911 Supreme Court decision, United States vs. Johnson, established that misleading statements were not covered under the FFDA; this directly led to Congress passing the Sherley Amendment which established a clearer definition of ‘misbranded’. Another key catalyst for advances in drug regulation were certain catastrophes that served as calls to the government to step in and impose regulations that would prevent repeats of those instances. One such instance occurred in 1937 when more than a hundred people died from using sulfanilamide elixir which had not gone through any safety testing; this directly led to the passing of the Federal, Food and Cosmetic Act in 1938. One other major catastrophe occurred in the late 1950s when Thalidomide, sold in Germany and sold around the world, led to 100,000 babies being born with various deformities.
The UK's Chief Medical Officer had established a group to look into safety of drugs on the market in 1959 prior to the crisis and was moving in the direction of address the problem of unregulated drugs entering the market. The crisis created a greater sense of emergency to establish safety and efficacy standards around the world; the UK started a temporary Committee on Safety of Drugs while they attempted to pass more comprehensive legislation. Though compliance and submission of drugs to the Committee on Safety of Drugs was not mandatory after, the pharmaceutical industry larger complied due to the thalidomide situation; the European Economic Commission passed a directive in 1965 in order to impose greater efficacy standards before marketing a drug. The United States congress passed the Drug Amendments Act of 1962 The Drug Amendments Act required the FDA to ensure that new drugs being introduced to the market had passed certain tests and standards. Both the EU and US acts introduced the requirements to ensure efficacy.
Of note, increased regulations and standards for testing led to greater innovation in pharm
Anti-obesity medication
Anti-obesity medication or weight loss drugs are pharmacological agents that reduce or control weight. These drugs alter one of the fundamental processes of the human body, weight regulation, by altering either appetite, or absorption of calories; the main treatment modalities for overweight and obese individuals remain dieting and physical exercise. In the United States orlistat is approved by the FDA for long-term use, it reduces intestinal fat absorption by inhibiting pancreatic lipase. Rimonabant, a second drug, works via a specific blockade of the endocannabinoid system, it has been developed from the knowledge that cannabis smokers experience hunger, referred to as "the munchies". It had been approved in Europe for the treatment of obesity but has not received approval in the United States or Canada due to safety concerns; the European Medicines Agency in October 2008 recommended the suspension of the sale of rimonabant as the risks seem to be greater than the benefits. Sibutramine, which acts in the brain to inhibit deactivation of the neurotransmitters, thereby decreasing appetite was withdrawn from the United States and Canadian markets in October 2010 due to cardiovascular concerns.
Because of potential side effects, limited evidence of small benefits in weight reduction in obese children and adolescents, it is recommended that anti-obesity drugs only be prescribed for obesity where it is hoped that the benefits of the treatment outweigh its risks. Current and potential anti-obesity drugs may operate through one or more of the following mechanisms: Catecholamine releasing agents such as amphetamine and related substituted amphetamines which act as appetite suppressants are the main tools used for the treatment of obesity. Increase of the body's metabolism. Interference with the body's ability to absorb specific nutrients in food. For example, Orlistat thereby prevents fat absorption; the OTC fiber supplements glucomannan and guar gum have been used for the purpose of inhibiting digestion and lowering caloric absorptionAnorectics are intended to suppress the appetite, but most of the drugs in this class act as stimulants, patients have abused drugs "off label" to suppress appetite.
The first described attempts at producing weight loss are those of Soranus of Ephesus, a Greek physician, in the second century AD. He prescribed elixirs of laxatives and purgatives, as well as heat and exercise; this remained the mainstay of treatment for well over a thousand years. It was not until the 1930s that new treatments began to appear. Based on its effectiveness for hypothyroidism, thyroid hormone became a popular treatment for obesity in euthyroid people, it had a modest effect but produced the symptoms of hyperthyroidism as a side effect, such as palpitations and difficulty sleeping. 2,4-Dinitrophenol was introduced in 1933. The most significant side effect was a sensation of warmth with sweating. Overdose, although rare, lead to a rise in body temperature and fatal hyperthermia. By the end of 1938 DNP had fallen out of use because the FDA had become empowered to put pressure on manufacturers, who voluntarily withdrew it from the market. Amphetamines became popular for weight loss during the late 1930s.
They worked by suppressing appetite, had other beneficial effects such as increased alertness. Use of amphetamines increased over the subsequent decades, including Obetrol and culminating in the "rainbow diet pill" regime; this was a combination of multiple pills, all thought to help with weight loss, taken throughout the day. Typical regimens included stimulants, such as amphetamines, as well as thyroid hormone, digitalis, a barbiturate to suppress the side effects of the stimulants. In 1967/1968 a number of deaths attributed to diet pills triggered a Senate investigation and the gradual implementation of greater restrictions on the market. While rainbow diet pills were banned in the US in the late 1960s, they reappeared in South America and Europe in the 1980s. Rainbow diet pills were re-introduced into the US by the 2000s and led to additional adverse health effects. Meanwhile, phentermine had been FDA approved in 1959 and fenfluramine in 1973; the two were no more popular than other drugs until in 1992 a researcher reported that when combined the two caused a 10% weight loss, maintained for more than two years.
Fen-phen was born and became the most prescribed diet medication. Dexfenfluramine was developed in the mid-1990s as an alternative to fenfluramine with fewer side-effects, received regulatory approval in 1996. However, this coincided with mounting evidence that the combination could cause valvular heart disease in up to 30% of those who had taken it, leading to withdrawal of Fen-phen and dexfenfluramine from the market in September 1997. Ephedra was removed from the US market in 2004 over concerns that it raises blood pressure and could lead to strokes and death; some patients find that exercise is not a viable option. Some prescription weight loss drugs are stimulants, which are recommended only for short-term use, thus are of limited usefulness for obese patients, who may need to reduce weight over months or years. Orlistat reduces intestinal fat absorption by inhibiting pancreatic lipase; some side-effects of using Orlistat include frequent, oily bowel movements
Pharmacokinetics
Pharmacokinetics, sometimes abbreviated as PK, is a branch of pharmacology dedicated to determine the fate of substances administered to a living organism. The substances of interest include any chemical xenobiotic such as: pharmaceutical drugs, food additives, etc, it attempts to analyze chemical metabolism and to discover the fate of a chemical from the moment that it is administered up to the point at which it is eliminated from the body. Pharmacokinetics is the study of how an organism affects a drug, whereas pharmacodynamics is the study of how the drug affects the organism. Both together influence dosing and adverse effects, as seen in PK/PD models. Pharmacokinetics describes how the body affects a specific xenobiotic/chemical after administration through the mechanisms of absorption and distribution, as well as the metabolic changes of the substance in the body, the effects and routes of excretion of the metabolites of the drug. Pharmacokinetic properties of chemicals are affected by the route of administration and the dose of administered drug.
These may affect the absorption rate. Models have been developed to simplify conceptualization of the many processes that take place in the interaction between an organism and a chemical substance. One of these, the multi-compartmental model, is the most used approximations to reality; the various compartments that the model is divided into are referred to as the ADME scheme: Liberation – the process of release of a drug from the pharmaceutical formulation. See IVIVC. Absorption – the process of a substance entering the blood circulation. Distribution – the dispersion or dissemination of substances throughout the fluids and tissues of the body. Metabolism – the recognition by the organism that a foreign substance is present and the irreversible transformation of parent compounds into daughter metabolites. Excretion – the removal of the substances from the body. In rare cases, some drugs irreversibly accumulate in body tissue; the two phases of metabolism and excretion can be grouped together under the title elimination.
The study of these distinct phases involves the use and manipulation of basic concepts in order to understand the process dynamics. For this reason in order to comprehend the kinetics of a drug it is necessary to have detailed knowledge of a number of factors such as: the properties of the substances that act as excipients, the characteristics of the appropriate biological membranes and the way that substances can cross them, or the characteristics of the enzyme reactions that inactivate the drug. All these concepts can be represented through mathematical formulas that have a corresponding graphical representation; the use of these models allows an understanding of the characteristics of a molecule, as well as how a particular drug will behave given information regarding some of its basic characteristics such as its acid dissociation constant and solubility, absorption capacity and distribution in the organism. The model outputs for a drug can be used in industry or in the clinical application of pharmacokinetic concepts.
Clinical pharmacokinetics provides many performance guidelines for effective and efficient use of drugs for human-health professionals and in veterinary medicine. The following are the most measured pharmacokinetic metrics: In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is in dynamic equilibrium with its elimination. In practice, it is considered that steady state is reached when a time of 4 to 5 times the half-life for a drug after regular dosing is started; the following graph depicts a typical time course of drug plasma concentration and illustrates main pharmacokinetic metrics: Pharmacokinetic modelling is performed by noncompartmental or compartmental methods. Noncompartmental methods estimate the exposure to a drug by estimating the area under the curve of a concentration-time graph. Compartmental methods estimate the concentration-time graph using kinetic models. Noncompartmental methods are more versatile in that they do not assume any specific compartmental model and produce accurate results acceptable for bioequivalence studies.
The final outcome of the transformations that a drug undergoes in an organism and the rules that determine this fate depend on a number of interrelated factors. A number of functional models have been developed in order to simplify the study of pharmacokinetics; these models are based on a consideration of an organism as a number of related compartments. The simplest idea is to think of an organism as only one homogenous compartment; this monocompartmental model presupposes that blood plasma concentrations of the drug are a true reflection of the drug's concentration in other fluids or tissues and that the elimination of the drug is directly proportional to the drug's concentration in the organism. However, these models do not always reflect the real situation within an organism. For example, not all body tissues have the same blood supply, so the distribution of the drug will be slower in these tissues than in others with a better blood supply. In addition, there are some tissues (s
Cathine
Cathine known as D-norpseudoephedrine and -norpseudoephedrine, is a psychoactive drug of the phenethylamine and amphetamine chemical classes which acts as a stimulant. Along with cathinone, it is found in Catha edulis, contributes to its overall effects, it has 10–14% the potency of amphetamine. Like amphetamines and ephedrine, cathine acts as a norepinephrine releasing agent, it acts as a dopamine releasing agent to a lesser extent. Cathine is one of the four stereoisomers of phenylpropanolamine; the World Anti-Doping Agency's list of prohibited substances bars cathine in concentrations of over 5 micrograms per milliliter in urine. Cathine is a Schedule III drug under the Convention on Psychotropic Substances. In the United States, it is classified as a Schedule IV controlled substance. In Australia, Cathine is a schedule 4 drug but is not available or approved for any use. In Hong Kong, cathine is regulated under Schedule 1 of Hong Kong's Chapter 134 Dangerous Drugs Ordinance. Unlawful possession is punishable by severe fines and imprisonment.
L-Norpseudoephedrine, the enantiomer Methcathinone Ephedra sinica Ephedrine Pseudoephedrine Methamphetamine