1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Vector space
–
A vector space is a collection of objects called vectors, which may be added together and multiplied by numbers, called scalars in this context. Scalars are often taken to be numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers. The operations of addition and scalar multiplication must satisfy certain requirements, called axioms. Euclidean vectors are an example of a vector space and they represent physical quantities such as forces, any two forces can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces and these vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are commonly used. This is particularly the case of Banach spaces and Hilbert spaces, historically, the first ideas leading to vector spaces can be traced back as far as the 17th centurys analytic geometry, matrices, systems of linear equations, and Euclidean vectors. Today, vector spaces are applied throughout mathematics, science and engineering, furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques, Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra. The concept of space will first be explained by describing two particular examples, The first example of a vector space consists of arrows in a fixed plane. This is used in physics to describe forces or velocities, given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows and is denoted v + w, when a is negative, av is defined as the arrow pointing in the opposite direction, instead. Such a pair is written as, the sum of two such pairs and multiplication of a pair with a number is defined as follows, + = and a =. The first example above reduces to one if the arrows are represented by the pair of Cartesian coordinates of their end points. A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below, elements of V are commonly called vectors. Elements of F are commonly called scalars, the second operation, called scalar multiplication takes any scalar a and any vector v and gives another vector av. In this article, vectors are represented in boldface to distinguish them from scalars

3.
Dual space
–
In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V together with a naturally induced linear structure. The dual space as defined above is defined for all vector spaces, when defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, when applied to vector spaces of functions, dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the space is an important concept in functional analysis. Given any vector space V over a field F, the dual space V∗ is defined as the set of all linear maps φ, V → F, since linear maps are vector space homomorphisms, the dual space is also sometimes denoted by Hom. The dual space V∗ itself becomes a space over F when equipped with an addition and scalar multiplication satisfying, = φ + ψ = a for all φ and ψ ∈ V∗, x ∈ V. Elements of the dual space V∗ are sometimes called covectors or one-forms. The pairing of a functional φ in the dual space V∗ and this pairing defines a nondegenerate bilinear mapping ⟨·, ·⟩, V∗ × V → F called the natural pairing. If V is finite-dimensional, then V∗ has the dimension as V. Given a basis in V, it is possible to construct a basis in V∗. This dual basis is a set of linear functionals on V, defined by the relation e i = c i, i =1, …, n for any choice of coefficients ci ∈ F. In particular, letting in turn one of those coefficients be equal to one. For example, if V is R2, and its basis chosen to be, then e1 and e2 are one-forms such that e1 =1, e1 =0, e2 =0, and e2 =1. In particular, if we interpret Rn as the space of columns of n real numbers, such a row acts on Rn as a linear functional by ordinary matrix multiplication. One way to see this is that a functional maps every n-vector x into a number y. So an element of V∗ can be thought of as a particular family of parallel lines covering the plane. To compute the value of a functional on a given vector, or, informally, one counts how many lines the vector crosses. The dimension of R∞ is countably infinite, whereas RN does not have a countable basis, again the sum is finite because fα is nonzero for only finitely many α

4.
Linear isomorphism
–
In mathematics, a linear map is a mapping V → W between two modules that preserves the operations of addition and scalar multiplication. An important special case is when V = W, in case the map is called a linear operator, or an endomorphism of V. Sometimes the term linear function has the meaning as linear map. A linear map always maps linear subspaces onto linear subspaces, for instance it maps a plane through the origin to a plane, Linear maps can often be represented as matrices, and simple examples include rotation and reflection linear transformations. In the language of algebra, a linear map is a module homomorphism. In the language of category theory it is a morphism in the category of modules over a given ring, let V and W be vector spaces over the same field K. e. that for any vectors x1. Am ∈ K, the equality holds, f = a 1 f + ⋯ + a m f. It is then necessary to specify which of these fields is being used in the definition of linear. If V and W are considered as spaces over the field K as above, for example, the conjugation of complex numbers is an R-linear map C → C, but it is not C-linear. A linear map from V to K is called a linear functional and these statements generalize to any left-module RM over a ring R without modification, and to any right-module upon reversing of the scalar multiplication. The zero map between two left-modules over the ring is always linear. The identity map on any module is a linear operator, any homothecy centered in the origin of a vector space, v ↦ c v where c is a scalar, is a linear operator. This does not hold in general for modules, where such a map might only be semilinear, for real numbers, the map x ↦ x2 is not linear. Conversely, any map between finite-dimensional vector spaces can be represented in this manner, see the following section. Differentiation defines a map from the space of all differentiable functions to the space of all functions. It also defines an operator on the space of all smooth functions. If V and W are finite-dimensional vector spaces over a field F, then functions that send linear maps f, V → W to dimF × dimF matrices in the way described in the sequel are themselves linear maps. The expected value of a variable is linear, as for random variables X and Y we have E = E + E and E = aE

5.
George Mackey
–
George Whitelaw Mackey was an American mathematician. Mackey earned his bachelor of arts at Rice University in 1938 and he joined the Harvard University Mathematics Department in 1943, was appointed Landon T. Clay Professor of Mathematics and Theoretical Science in 1969 and remained there until he retired in 1985. A central role in Mackeys work, both in the theory of representations and in mathematical physics, was played by the concepts of system of imprimitivity. This idea led naturally to an analysis of the theory of semi-direct products in terms of ergodic actions of groups. Mackeys results were essential tools in the study of the theory of nilpotent Lie groups using the method of orbits developed by Alexandre Kirillov in the 1960s. His notion of virtual subgroup, introduced in 1966 using the language of groupoids, had a significant influence in ergodic theory, another essential ingredient in Mackeys work was the assignment of a Borel structure to the dual object of a locally compact group G. One of Mackeys important conjectures, which was solved by work of James Glimm on C*-algebras, was that G is type I if. He has written numerous survey articles connecting his interests with a large body of mathematics and physics, particularly quantum mechanics. Mackey was among the first five recipients of William Lowell Putnam fellowships in 1938, Mackey was an elected member of the American Academy of Arts and Sciences and the National Academy of Science. Lawrence G. Brown, Calvin Moore, Richard Palais and John Wermer have been students of Mackey. Andrew Gleason had no PhD, but considered Mackey to be his advisor, George Mackey at the Mathematics Genealogy Project George Mackey, Notices of the American Mathematical Society, vol. George Mackey, Proceedings of the American Philosophical Society, vol, collected by Stephanie Singer First letter Second letter Speech