1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
2.
Regular polytope
–
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, Regular polytopes are the generalized analog in any number of dimensions of regular polygons and regular polyhedra. The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians, classically, a regular polytope in n dimensions may be defined as having regular facets and regular vertex figures. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike, note, however, that this definition does not work for abstract polytopes. A regular polytope can be represented by a Schläfli symbol of the form, with regular facets as, Regular polytopes are classified primarily according to their dimensionality. They can be classified according to symmetry. For example, the cube and the regular octahedron share the same symmetry, indeed, symmetry groups are sometimes named after regular polytopes, for example the tetrahedral and icosahedral symmetries. Three special classes of regular polytope exist in every dimensionality, Regular simplex Measure polytope Cross polytope In two dimensions there are many regular polygons. In three and four dimensions there are more regular polyhedra and 4-polytopes besides these three. In five dimensions and above, these are the only ones, see also the list of regular polytopes. The idea of a polytope is sometimes generalised to include related kinds of geometrical object, some of these have regular examples, as discussed in the section on historical discovery below. A concise symbolic representation for regular polytopes was developed by Ludwig Schläfli in the 19th Century, the notation is best explained by adding one dimension at a time. A convex regular polygon having n sides is denoted by, so an equilateral triangle is, a square, and so on indefinitely. A regular star polygon which winds m times around its centre is denoted by the fractional value, a regular polyhedron having faces with p faces joining around a vertex is denoted by. The nine regular polyhedra are and. is the figure of the polyhedron. A regular 4-polytope having cells with q cells joining around an edge is denoted by, the vertex figure of the 4-polytope is a. A five-dimensional regular polytope is an, the dual of a regular polytope is also a regular polytope. The Schläfli symbol for the dual polytope is just the original written backwards, is self-dual, is dual to, to
3.
4 21 polytope
–
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper and he called it an 8-ic semi-regular figure. Its Coxeter symbol is 421, describing its bifurcating Coxeter-Dynkin diagram, the rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the face centers of the 421. The trirectified 421 is constructed by points at the centers of the 421. The 421 is composed of 17,280 7-simplex and 2,160 7-orthoplex facets and its vertex figure is the 321 polytope. For visualization this 8-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 240 vertices within a regular triacontagon and its 6720 edges are drawn between the 240 vertices. Specific higher elements can also be extracted and drawn on this projection, as its 240 vertices represent the root vectors of the simple Lie group E8, the polytope is sometimes referred to as the E8 polytope. The vertices of this polytope can be obtained by taking the 240 integral octonions of norm 1, because the octonions are a nonassociative normed division algebra, these 240 points have a multiplication operation making them not into a group but rather a loop, in fact a Moufang loop. This polytope was discovered by Thorold Gosset, who described it in his 1900 paper as an 8-ic semi-regular figure and it is the last finite semiregular figure in his enumeration, semiregular to him meaning that it contained only regular facets. E. L. Elte named it V240 in his 1912 listing of semiregular polytopes, Coxeter called it 421 because its Coxeter-Dynkin diagram has three branches of length 4,2, and 1, with a single node on the terminal node of the 4 branch. Dischiliahectohexaconta-myriaheptachiliadiacosioctaconta-zetton - 2160-17280 facetted polyzetton It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space and these 56 points are the vertices of a 321 polytope in 7 dimensions. These 126 points are the vertices of a 231 polytope in 7 dimensions. Each vertex also has 56 third nearest neighbors, which are the negatives of its nearest neighbors, there are 17,280 simplex facets and 2160 orthoplex facets. Since every 7-simplex has 7 6-simplex facets, each incident to no other 6-simplex, since every 7-orthoplex has 128 6-simplex facets, half of which are not incident to 7-simplexes, the 421 polytope has 138,240 6-simplex faces that are not facets of 7-simplexes. The 421 polytope thus has two kinds of 6-simplex faces, not interchanged by symmetries of this polytope, the total number of 6-simplex faces is 259200. The vertex figure of a polytope is obtained by removing the ringed node. These graphs represent orthographic projections in the E8, E7, E6, the vertex colors are by overlapping multiplicity in the projection, colored by increasing order of multiplicities as red, orange, yellow, green
4.
William Rowan Hamilton
–
Sir William Rowan Hamilton PRIA FRSE was an Irish physicist, astronomer, and mathematician, who made important contributions to classical mechanics, optics, and algebra. His studies of mechanical and optical systems led him to discover new mathematical concepts and his best known contribution to mathematical physics is the reformulation of Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the study of classical field theories such as electromagnetism. In pure mathematics, he is best known as the inventor of quaternions, Hamilton is said to have shown immense talent at a very early age. Astronomer Bishop Dr. John Brinkley remarked of the 18-year-old Hamilton, This young man, I do not say will be, but is, Hamilton also invented icosian calculus, which he used to investigate closed edge paths on a dodecahedron that visit each vertex exactly once. Hamilton was the fourth of nine born to Sarah Hutton and Archibald Hamilton. Hamiltons father, who was from Dunboyne, worked as a solicitor, by the age of three, Hamilton had been sent to live with his uncle James Hamilton, a graduate of Trinity College who ran a school in Talbots Castle in Trim, Co. His uncle soon discovered that Hamilton had an ability to learn languages. At the age of seven he had made very considerable progress in Hebrew. These included the classical and modern European languages, and Persian, Arabic, Hindustani, Sanskrit, in September 1813 the American calculating prodigy Zerah Colburn was being exhibited in Dublin. Colburn was 9, an older than Hamilton. The two were pitted against each other in a mental arithmetic contest with Colburn emerging the clear victor, in reaction to his defeat, Hamilton dedicated less time to studying languages and more time to studying mathematics. Hamilton was part of a small but well-regarded school of mathematicians associated with Trinity College, Dublin, which he entered at age 18. He studied both classics and mathematics, and was appointed Professor of Astronomy in 1827, prior to his taking up residence at Dunsink Observatory where he spent the rest of his life. Hamilton made important contributions to optics and to classical mechanics and his first discovery was in an early paper that he communicated in 1823 to Dr. Brinkley, who presented it under the title of Caustics in 1824 to the Royal Irish Academy. It was referred as usual to a committee, while their report acknowledged its novelty and value, they recommended further development and simplification before publication. Between 1825 and 1828 the paper grew to an immense size, but it also became more intelligible, and the features of the new method were now easily to be seen. Until this period Hamilton himself seems not to have fully understood either the nature or importance of optics and he proposed for it when he first predicted its existence in the third supplement to his Systems of Rays, read in 1832
5.
Special relativity
–
In physics, special relativity is the generally accepted and experimentally well-confirmed physical theory regarding the relationship between space and time. In Albert Einsteins original pedagogical treatment, it is based on two postulates, The laws of physics are invariant in all inertial systems, the speed of light in a vacuum is the same for all observers, regardless of the motion of the light source. It was originally proposed in 1905 by Albert Einstein in the paper On the Electrodynamics of Moving Bodies, as of today, special relativity is the most accurate model of motion at any speed. Even so, the Newtonian mechanics model is useful as an approximation at small velocities relative to the speed of light. Not until Einstein developed general relativity, to incorporate general frames of reference, a translation that has often been used is restricted relativity, special really means special case. It has replaced the notion of an absolute universal time with the notion of a time that is dependent on reference frame. Rather than an invariant time interval between two events, there is an invariant spacetime interval, a defining feature of special relativity is the replacement of the Galilean transformations of Newtonian mechanics with the Lorentz transformations. Time and space cannot be defined separately from each other, rather space and time are interwoven into a single continuum known as spacetime. Events that occur at the time for one observer can occur at different times for another. The theory is special in that it applies in the special case where the curvature of spacetime due to gravity is negligible. In order to include gravity, Einstein formulated general relativity in 1915, Special relativity, contrary to some outdated descriptions, is capable of handling accelerations as well as accelerated frames of reference. e. At a sufficiently small scale and in conditions of free fall, a locally Lorentz-invariant frame that abides by special relativity can be defined at sufficiently small scales, even in curved spacetime. Galileo Galilei had already postulated that there is no absolute and well-defined state of rest, Einstein extended this principle so that it accounted for the constant speed of light, a phenomenon that had been recently observed in the Michelson–Morley experiment. He also postulated that it holds for all the laws of physics, Einstein discerned two fundamental propositions that seemed to be the most assured, regardless of the exact validity of the known laws of either mechanics or electrodynamics. These propositions were the constancy of the speed of light and the independence of physical laws from the choice of inertial system, the Principle of Invariant Light Speed –. Light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body. That is, light in vacuum propagates with the c in at least one system of inertial coordinates. Following Einsteins original presentation of special relativity in 1905, many different sets of postulates have been proposed in various alternative derivations, however, the most common set of postulates remains those employed by Einstein in his original paper
6.
Manifold
–
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of a manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. One-dimensional manifolds include lines and circles, but not figure eights, two-dimensional manifolds are also called surfaces. Although a manifold locally resembles Euclidean space, globally it may not, for example, the surface of the sphere is not a Euclidean space, but in a region it can be charted by means of map projections of the region into the Euclidean plane. When a region appears in two neighbouring charts, the two representations do not coincide exactly and a transformation is needed to pass from one to the other, Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. One important class of manifolds is the class of differentiable manifolds and this differentiable structure allows calculus to be done on manifolds. A Riemannian metric on a manifold allows distances and angles to be measured, symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model spacetime in general relativity. After a line, the circle is the simplest example of a topological manifold, Topology ignores bending, so a small piece of a circle is treated exactly the same as a small piece of a line. Consider, for instance, the top part of the circle, x2 + y2 =1. Any point of this arc can be described by its x-coordinate. So, projection onto the first coordinate is a continuous, and invertible, mapping from the arc to the open interval. Such functions along with the regions they map are called charts. Similarly, there are charts for the bottom, left, and right parts of the circle, together, these parts cover the whole circle and the four charts form an atlas for the circle. The top and right charts, χtop and χright respectively, overlap in their domain, Each map this part into the interval, though differently. Let a be any number in, then, T = χ r i g h t = χ r i g h t =1 − a 2 Such a function is called a transition map. The top, bottom, left, and right charts show that the circle is a manifold, charts need not be geometric projections, and the number of charts is a matter of some choice. These two charts provide a second atlas for the circle, with t =1 s Each chart omits a single point, either for s or for t and it can be proved that it is not possible to cover the full circle with a single chart. Viewed using calculus, the transition function T is simply a function between open intervals, which gives a meaning to the statement that T is differentiable
7.
Complex number
–
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit, satisfying the equation i2 = −1. In this expression, a is the part and b is the imaginary part of the complex number. If z = a + b i, then ℜ z = a, ℑ z = b, Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + bi can be identified with the point in the complex plane, a complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. In this way, the numbers are a field extension of the ordinary real numbers. As well as their use within mathematics, complex numbers have applications in many fields, including physics, chemistry, biology, economics, electrical engineering. The Italian mathematician Gerolamo Cardano is the first known to have introduced complex numbers and he called them fictitious during his attempts to find solutions to cubic equations in the 16th century. Complex numbers allow solutions to equations that have no solutions in real numbers. For example, the equation 2 = −9 has no real solution, Complex numbers provide a solution to this problem. The idea is to extend the real numbers with the unit i where i2 = −1. According to the theorem of algebra, all polynomial equations with real or complex coefficients in a single variable have a solution in complex numbers. A complex number is a number of the form a + bi, for example, −3.5 + 2i is a complex number. The real number a is called the part of the complex number a + bi. By this convention the imaginary part does not include the unit, hence b. The real part of a number z is denoted by Re or ℜ. For example, Re = −3.5 Im =2, hence, in terms of its real and imaginary parts, a complex number z is equal to Re + Im ⋅ i. This expression is known as the Cartesian form of z. A real number a can be regarded as a number a + 0i whose imaginary part is 0
8.
Pauli matrices
–
In mathematical physics and mathematics, the Pauli matrices are a set of three 2 ×2 complex matrices which are Hermitian and unitary. Usually indicated by the Greek letter sigma, they are denoted by tau when used in connection with isospin symmetries. They are σ1 = σ x = σ2 = σ y = σ3 = σ z = and these matrices are named after the physicist Wolfgang Pauli. In quantum mechanics, they occur in the Pauli equation which takes account the interaction of the spin of a particle with an external electromagnetic field. Each Pauli matrix is Hermitian, and together with the identity matrix I, Hermitian operators represent observables, so the Pauli matrices span the space of observables of the 2-dimensional complex Hilbert space. In the context of Paulis work, σk represents the corresponding to spin along the kth coordinate axis in three-dimensional Euclidean space ℝ3. The Pauli matrices, also generate transformations in the sense of Lie algebras, the matrices iσ1, iσ2, iσ3 form a basis for su, which exponentiates to the special unitary group SU. The algebra generated by the three matrices σ1, σ2, σ3 is isomorphic to the Clifford algebra of ℝ3, called the algebra of physical space. All three of the Pauli matrices can be compacted into an expression, σ a = where i = √−1 is the imaginary unit, and δab is the Kronecker delta. This expression is useful for selecting any one of the matrices numerically by substituting values of a =1,2,3, in turn useful when any of the matrices is to be used in algebraic manipulations. The matrices are involutory, σ12 = σ22 = σ32 = − i σ1 σ2 σ3 = = I where I is the identity matrix. The determinants and traces of the Pauli matrices are, det σ i = −1, from above we can deduce that the eigenvalues of each σi are ±1. Each of the Pauli matrices has two eigenvalues, +1 and −1. The corresponding normalized eigenvectors are, ψ x + =12, ψ x − =12, ψ y + =12, ψ y − =12, ψ z + =, ψ z − =. Further, det a → ⋅ σ → = − a → ⋅ a → = − | a → |2, its eigenvalues being ± | a → | and its eigenvectors are ψ + =, ψ − =. For example, =2 i σ3 =2 i σ1 =2 i σ2 =0 =2 I =0, Pauli vectors elegantly map these commutation and anticommutation relations to corresponding vector products. Finally, translating the index notation for the dot product and cross product results in Following traces can be derived using the commutation and anticommutation relations, thus, for odd powers,2 n +1 = n ^ ⋅ σ →. Matrix exponentiating, and using the Taylor series for sine and cosine, + i ∑ n =0 ∞ n a 2 n +1
9.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
10.
Neil Sloane
–
Neil James Alexander Sloane is a British-American mathematician. His major contributions are in the fields of combinatorics, error-correcting codes, Sloane is best known for being the creator and maintainer of the On-Line Encyclopedia of Integer Sequences. Sloane was born in Wales and brought up in Australia and he studied at Cornell University, New York state, under Nick DeClaris, Frank Rosenblatt, Frederick Jelinek and Wolfgang Heinrich Johannes Fuchs, receiving his Ph. D. in 1967. His doctoral dissertation was titled Lengths of Cycle Times in Random Neural Networks, Sloane joined AT&T Bell Labs in 1968 and retired from AT&T Labs in 2012. He became an AT&T Fellow in 1998 and he is also a Fellow of the Learned Society of Wales, an IEEE Fellow, a Fellow of the American Mathematical Society, and a member of the National Academy of Engineering. He is a winner of a Lester R. Ford Award in 1978, in 2005 Sloane received the IEEE Richard W. Hamming Medal. In 2008 he received the Mathematical Association of America David P. Robbins award, in 2014, to celebrate his 75th birthday, Neil Sloane shared some of his favorite integer sequences. Besides mathematics, he loves rock climbing and has authored two rock-climbing guides to New Jersey, N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, NY,1973. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North-Holland, M. Harwit and N. J. A. Sloane, Hadamard Transform Optics, Academic Press, San Diego CA,1979. N. J. A. Sloane and A. D. Wyner, editors, Claude Elwood Shannon, Collected Papers, IEEE Press, N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, San Diego,1995. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, NY, 1st edn. A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays, Theory and Applications, Springer-Verlag, NY,1999. G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer-Verlag,2006
11.
John Horton Conway
–
John Horton Conway FRS is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He has also contributed to many branches of mathematics, notably the invention of the cellular automaton called the Game of Life. Conway is currently Professor Emeritus of Mathematics at Princeton University in New Jersey, Conway was born in Liverpool, the son of Cyril Horton Conway and Agnes Boyce. He became interested in mathematics at an early age, his mother has recalled that he could recite the powers of two when he was four years old. By the age of eleven his ambition was to become a mathematician, after leaving secondary school, Conway entered Gonville and Caius College, Cambridge to study mathematics. Conway, who was a terribly introverted adolescent in school, interpreted his admission to Cambridge as an opportunity to transform himself into a new person and he was awarded his Bachelor of Arts degree in 1959 and began to undertake research in number theory supervised by Harold Davenport. Having solved the problem posed by Davenport on writing numbers as the sums of fifth powers. It appears that his interest in games began during his years studying the Cambridge Mathematical Tripos and he was awarded his doctorate in 1964 and was appointed as College Fellow and Lecturer in Mathematics at the University of Cambridge. After leaving Cambridge in 1986, he took up the appointment to the John von Neumann Chair of Mathematics at Princeton University, Conway is especially known for the invention of the Game of Life, one of the early examples of a cellular automaton. His initial experiments in that field were done with pen and paper, since the game was introduced by Martin Gardner in Scientific American in 1970, it has spawned hundreds of computer programs, web sites, and articles. It is a staple of recreational mathematics, there is an extensive wiki devoted to curating and cataloging the various aspects of the game. From the earliest days it has been a favorite in computer labs, at times Conway has said he hates the game of life–largely because it has come to overshadow some of the other deeper and more important things he has done. Nevertheless, the game did help launch a new branch of mathematics, the Game of Life is now known to be Turing complete. Conways career is intertwined with mathematics popularizer and Scientific American columnist Martin Gardner, when Gardner featured Conways Game of Life in his Mathematical Games column in October 1970, it became the most widely read of all his columns and made Conway an instant celebrity. Gardner and Conway had first corresponded in the late 1950s, for instance, he discussed Conways game of Sprouts, Hackenbush, and his angel and devil problem. In the September 1976 column he reviewed Conways book On Numbers and Games, Conway is widely known for his contributions to combinatorial game theory, a theory of partisan games. This he developed with Elwyn Berlekamp and Richard Guy, and with them also co-authored the book Winning Ways for your Mathematical Plays and he also wrote the book On Numbers and Games which lays out the mathematical foundations of CGT. He is also one of the inventors of sprouts, as well as philosophers football and he developed detailed analyses of many other games and puzzles, such as the Soma cube, peg solitaire, and Conways soldiers