1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
2.
Real number
–
In mathematics, a real number is a value that represents a quantity along a line. The adjective real in this context was introduced in the 17th century by René Descartes, the real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2. Included within the irrationals are the numbers, such as π. Real numbers can be thought of as points on a long line called the number line or real line. Any real number can be determined by a possibly infinite decimal representation, such as that of 8.632, the real line can be thought of as a part of the complex plane, and complex numbers include real numbers. These descriptions of the numbers are not sufficiently rigorous by the modern standards of pure mathematics. All these definitions satisfy the definition and are thus equivalent. The statement that there is no subset of the reals with cardinality greater than ℵ0. Simple fractions were used by the Egyptians around 1000 BC, the Vedic Sulba Sutras in, c.600 BC, around 500 BC, the Greek mathematicians led by Pythagoras realized the need for irrational numbers, in particular the irrationality of the square root of 2. Arabic mathematicians merged the concepts of number and magnitude into a general idea of real numbers. In the 16th century, Simon Stevin created the basis for modern decimal notation, in the 17th century, Descartes introduced the term real to describe roots of a polynomial, distinguishing them from imaginary ones. In the 18th and 19th centuries, there was work on irrational and transcendental numbers. Johann Heinrich Lambert gave the first flawed proof that π cannot be rational, Adrien-Marie Legendre completed the proof, Évariste Galois developed techniques for determining whether a given equation could be solved by radicals, which gave rise to the field of Galois theory. Charles Hermite first proved that e is transcendental, and Ferdinand von Lindemann, lindemanns proof was much simplified by Weierstrass, still further by David Hilbert, and has finally been made elementary by Adolf Hurwitz and Paul Gordan. The development of calculus in the 18th century used the set of real numbers without having defined them cleanly. The first rigorous definition was given by Georg Cantor in 1871, in 1874, he showed that the set of all real numbers is uncountably infinite but the set of all algebraic numbers is countably infinite. Contrary to widely held beliefs, his first method was not his famous diagonal argument, the real number system can be defined axiomatically up to an isomorphism, which is described hereafter. Another possibility is to start from some rigorous axiomatization of Euclidean geometry, from the structuralist point of view all these constructions are on equal footing
3.
Point (geometry)
–
In modern mathematics, a point refers usually to an element of some set called a space. More specifically, in Euclidean geometry, a point is a primitive notion upon which the geometry is built, being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called axioms, in particular, the geometric points do not have any length, area, volume, or any other dimensional attribute. A common interpretation is that the concept of a point is meant to capture the notion of a location in Euclidean space. Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects, Euclid originally defined the point as that which has no part. This idea is easily generalized to three-dimensional Euclidean space, where a point is represented by a triplet with the additional third number representing depth. Further generalizations are represented by an ordered tuplet of n terms, many constructs within Euclidean geometry consist of an infinite collection of points that conform to certain axioms. This is usually represented by a set of points, As an example, a line is a set of points of the form L =. Similar constructions exist that define the plane, line segment and other related concepts, a line segment consisting of only a single point is called a degenerate line segment. In addition to defining points and constructs related to points, Euclid also postulated a key idea about points, in spite of this, modern expansions of the system serve to remove these assumptions. There are several inequivalent definitions of dimension in mathematics, in all of the common definitions, a point is 0-dimensional. The dimension of a space is the maximum size of a linearly independent subset. In a vector space consisting of a point, there is no linearly independent subset. The zero vector is not itself linearly independent, because there is a non trivial linear combination making it zero,1 ⋅0 =0, if no such minimal n exists, the space is said to be of infinite covering dimension. A point is zero-dimensional with respect to the covering dimension because every open cover of the space has a refinement consisting of a open set. The Hausdorff dimension of X is defined by dim H , = inf, a point has Hausdorff dimension 0 because it can be covered by a single ball of arbitrarily small radius. Although the notion of a point is considered fundamental in mainstream geometry and topology, there are some systems that forgo it, e. g. noncommutative geometry. More precisely, such structures generalize well-known spaces of functions in a way that the operation take a value at this point may not be defined
4.
Vector space
–
A vector space is a collection of objects called vectors, which may be added together and multiplied by numbers, called scalars in this context. Scalars are often taken to be numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers. The operations of addition and scalar multiplication must satisfy certain requirements, called axioms. Euclidean vectors are an example of a vector space and they represent physical quantities such as forces, any two forces can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces and these vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are commonly used. This is particularly the case of Banach spaces and Hilbert spaces, historically, the first ideas leading to vector spaces can be traced back as far as the 17th centurys analytic geometry, matrices, systems of linear equations, and Euclidean vectors. Today, vector spaces are applied throughout mathematics, science and engineering, furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques, Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra. The concept of space will first be explained by describing two particular examples, The first example of a vector space consists of arrows in a fixed plane. This is used in physics to describe forces or velocities, given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows and is denoted v + w, when a is negative, av is defined as the arrow pointing in the opposite direction, instead. Such a pair is written as, the sum of two such pairs and multiplication of a pair with a number is defined as follows, + = and a =. The first example above reduces to one if the arrows are represented by the pair of Cartesian coordinates of their end points. A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below, elements of V are commonly called vectors. Elements of F are commonly called scalars, the second operation, called scalar multiplication takes any scalar a and any vector v and gives another vector av. In this article, vectors are represented in boldface to distinguish them from scalars
5.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space
6.
Dot product
–
In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers and returns a single number. Sometimes it is called inner product in the context of Euclidean space, algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them, the dot product may be defined algebraically or geometrically. The geometric definition is based on the notions of angle and distance, the equivalence of these two definitions relies on having a Cartesian coordinate system for Euclidean space. In such a presentation, the notions of length and angles are not primitive, so the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of Euclidean geometry. For instance, in space, the dot product of vectors and is. In Euclidean space, a Euclidean vector is an object that possesses both a magnitude and a direction. A vector can be pictured as an arrow and its magnitude is its length, and its direction is the direction that the arrow points. The magnitude of a vector a is denoted by ∥ a ∥, the dot product of two Euclidean vectors a and b is defined by a ⋅ b = ∥ a ∥ ∥ b ∥ cos , where θ is the angle between a and b. In particular, if a and b are orthogonal, then the angle between them is 90° and a ⋅ b =0. The scalar projection of a Euclidean vector a in the direction of a Euclidean vector b is given by a b = ∥ a ∥ cos θ, where θ is the angle between a and b. In terms of the definition of the dot product, this can be rewritten a b = a ⋅ b ^. The dot product is thus characterized geometrically by a ⋅ b = a b ∥ b ∥ = b a ∥ a ∥. The dot product, defined in this manner, is homogeneous under scaling in each variable and it also satisfies a distributive law, meaning that a ⋅ = a ⋅ b + a ⋅ c. These properties may be summarized by saying that the dot product is a bilinear form, moreover, this bilinear form is positive definite, which means that a ⋅ a is never negative and is zero if and only if a =0. En are the basis vectors in Rn, then we may write a = = ∑ i a i e i b = = ∑ i b i e i. The vectors ei are a basis, which means that they have unit length and are at right angles to each other. Hence since these vectors have unit length e i ⋅ e i =1 and since they form right angles with each other, thus in general we can say that, e i ⋅ e j = δ i j
7.
Field (mathematics)
–
In mathematics, a field is a set on which are defined addition, subtraction, multiplication, and division, which behave as they do when applied to rational and real numbers. A field is thus an algebraic structure, which is widely used in algebra, number theory. The best known fields are the field of numbers. In addition, the field of numbers is widely used, not only in mathematics. Finite fields are used in most cryptographic protocols used for computer security, any field may be used as the scalars for a vector space, which is the standard general context for linear algebra. Formally, a field is a set together with two operations the addition and the multiplication, which have the properties, called axioms of fields. An operation is a mapping that associates an element of the set to every pair of its elements, the result of the addition of a and b is called the sum of a and b and denoted a + b. Similarly, the result of the multiplication of a and b is called the product of a and b, associativity of addition and multiplication For all a, b and c in F, one has a + = + c and a · = · c. Commutativity of addition and multiplication For all a and b in F one has a + b = b + a and a · b = b · a. Existence of additive and multiplicative identity elements There exists an element 0 in F, called the identity, such that for all a in F. There is an element 1, different from 0 and called the identity, such that for all a in F. Existence of additive inverses and multiplicative inverses For every a in F, there exists an element in F, denoted −a, such that a + =0. For every a ≠0 in F, there exists an element in F, denoted a−1, 1/a, or 1/a, distributivity of multiplication over addition For all a, b and c in F, one has a · = +. The elements 0 and 1 being required to be distinct, a field has, at least, for every a in F, one has − a = ⋅ a. Thus, the inverse of every element is known as soon as one knows the additive inverse of 1. A subtraction and a division are defined in every field by a − b = a +, a subfield E of a field F is a subset of F that contains 1, and is closed under addition, multiplication, additive inverse and multiplicative inverse of a nonzero element. It is straightforward to verify that a subfield is indeed a field, two groups are associated to every field. The field itself is a group under addition, when considering this group structure rather the field structure, one talks of the additive group of the field
8.
Complex number
–
A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers and i is the imaginary unit, satisfying the equation i2 = −1. In this expression, a is the part and b is the imaginary part of the complex number. If z = a + b i, then ℜ z = a, ℑ z = b, Complex numbers extend the concept of the one-dimensional number line to the two-dimensional complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. The complex number a + bi can be identified with the point in the complex plane, a complex number whose real part is zero is said to be purely imaginary, whereas a complex number whose imaginary part is zero is a real number. In this way, the numbers are a field extension of the ordinary real numbers. As well as their use within mathematics, complex numbers have applications in many fields, including physics, chemistry, biology, economics, electrical engineering. The Italian mathematician Gerolamo Cardano is the first known to have introduced complex numbers and he called them fictitious during his attempts to find solutions to cubic equations in the 16th century. Complex numbers allow solutions to equations that have no solutions in real numbers. For example, the equation 2 = −9 has no real solution, Complex numbers provide a solution to this problem. The idea is to extend the real numbers with the unit i where i2 = −1. According to the theorem of algebra, all polynomial equations with real or complex coefficients in a single variable have a solution in complex numbers. A complex number is a number of the form a + bi, for example, −3.5 + 2i is a complex number. The real number a is called the part of the complex number a + bi. By this convention the imaginary part does not include the unit, hence b. The real part of a number z is denoted by Re or ℜ. For example, Re = −3.5 Im =2, hence, in terms of its real and imaginary parts, a complex number z is equal to Re + Im ⋅ i. This expression is known as the Cartesian form of z. A real number a can be regarded as a number a + 0i whose imaginary part is 0