1.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n

2.
Numerical digit
–
A digit is a numeric symbol used in combinations to represent numbers in positional numeral systems. The name digit comes from the fact that the 10 digits of the hands correspond to the 10 symbols of the common base 10 numeral system, i. e. the decimal digits. In a given system, if the base is an integer. For example, the system has ten digits, whereas binary has two digits. In a basic system, a numeral is a sequence of digits. Each position in the sequence has a value, and each digit has a value. The value of the numeral is computed by multiplying each digit in the sequence by its place value, each digit in a number system represents an integer. For example, in decimal the digit 1 represents the one, and in the hexadecimal system. A positional number system must have a digit representing the integers from zero up to, but not including, thus in the positional decimal system, the numbers 0 to 9 can be expressed using their respective numerals 0 to 9 in the rightmost units position. The Hindu–Arabic numeral system uses a decimal separator, commonly a period in English, or a comma in other European languages, to denote the place or units place. Each successive place to the left of this has a value equal to the place value of the previous digit times the base. Similarly, each place to the right of the separator has a place value equal to the place value of the previous digit divided by the base. For example, in the numeral 10, the total value of the number is 1 ten,0 ones,3 tenths, and 4 hundredths. Note that the zero, which contributes no value to the number, the place value of any given digit in a numeral can be given by a simple calculation, which in itself is a compliment to the logic behind numeral systems. And to the right, the digit is multiplied by the base raised by a negative n, for example, in the number 10. This system was established by the 7th century in India, but was not yet in its modern form because the use of the digit zero had not yet widely accepted. Instead of a zero, a dot was left in the numeral as a placeholder, the first widely acknowledged use of zero was in 876. The original numerals were very similar to the ones, even down to the glyphs used to represent digits

3.
On-Line Encyclopedia of Integer Sequences
–
The On-Line Encyclopedia of Integer Sequences, also cited simply as Sloanes, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs, Sloane continues to be involved in the OEIS in his role as President of the OEIS Foundation. OEIS records information on integer sequences of interest to professional mathematicians and amateurs, and is widely cited. As of 30 December 2016 it contains nearly 280,000 sequences, the database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a student in 1965 to support his work in combinatorics. The database was at first stored on punched cards and he published selections from the database in book form twice, A Handbook of Integer Sequences, containing 2,372 sequences in lexicographic order and assigned numbers from 1 to 2372. The Encyclopedia of Integer Sequences with Simon Plouffe, containing 5,488 sequences and these books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service, as a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998. The database continues to grow at a rate of some 10,000 entries a year, Sloane has personally managed his sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database. In 2004, Sloane celebrated the addition of the 100, 000th sequence to the database, A100000, in 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS. org was created to simplify the collaboration of the OEIS editors and contributors, besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences. Sequences of rationals are represented by two sequences, the sequence of numerators and the sequence of denominators, important irrational numbers such as π =3.1415926535897. are catalogued under representative integer sequences such as decimal expansions, binary expansions, or continued fraction expansions. The OEIS was limited to plain ASCII text until 2011, yet it still uses a form of conventional mathematical notation. Greek letters are represented by their full names, e. g. mu for μ. Every sequence is identified by the letter A followed by six digits, sometimes referred to without the leading zeros, individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces, a represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements, for example, A104157 enumerates the smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists. The value of a is 2, a is 1480028129, but there is no such 2×2 magic square, so a is 0

4.
Semiprime
–
In mathematics, a semiprime is a natural number that is the product of two prime numbers. The semiprimes less than 100 are 4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,65,69,74,77,82,85,86,87,91,93,94, and 95. Semiprimes that are not perfect squares are called discrete, or distinct, by definition, semiprime numbers have no composite factors other than themselves. For example, the number 26 is semiprime and its factors are 1,2,13. The total number of prime factors Ω for a n is two, by definition. A semiprime is either a square of a prime or square-free, the square of any prime number is a semiprime, so the largest known semiprime will always be the square of the largest known prime, unless the factors of the semiprime are not known. It is conceivable, but unlikely, that a way could be found to prove a number is a semiprime without knowing the two factors. A composite n non-divisible by primes ≤ n 3 is semiprime, various methods, such as elliptic pseudo-curves and the Goldwasser-Kilian ECPP theorem have been used to create provable, unfactored semiprimes with hundreds of digits. These are considered novelties, since their construction method might prove vulnerable to factorization, for a semiprime n = pq the value of Eulers totient function is particularly simple when p and q are distinct, φ = = p q − +1 = n − +1. If otherwise p and q are the same, φ = φ = p = p2 − p = n − p and these methods rely on the fact that finding two large primes and multiplying them together is computationally simple, whereas finding the original factors appears to be difficult. In the RSA Factoring Challenge, RSA Security offered prizes for the factoring of specific large semiprimes, the most recent such challenge closed in 2007. In practical cryptography, it is not sufficient to choose just any semiprime, the factors p and q of n should both be very large, around the same order of magnitude as the square root of n, this makes trial division and Pollards rho algorithm impractical. At the same time they should not be too close together, or else the number can be quickly factored by Fermats factorization method. The number may also be chosen so that none of p −1, p +1, q −1, or q +1 are smooth numbers, protecting against Pollards p −1 algorithm or Williams p +1 algorithm. However, these checks cannot take future algorithms or secret algorithms into account, in 1974 the Arecibo message was sent with a radio signal aimed at a star cluster. It consisted of 1679 binary digits intended to be interpreted as a 23×73 bitmap image, the number 1679 = 23×73 was chosen because it is a semiprime and therefore can only be broken down into 23 rows and 73 columns, or 73 rows and 23 columns. Chens theorem Weisstein, Eric W. Semiprime

5.
Duodecimal
–
The duodecimal system is a positional notation numeral system using twelve as its base. In this system, the number ten may be written by a rotated 2 and this notation was introduced by Sir Isaac Pitman. These digit forms are available as Unicode characters on computerized systems since June 2015 as ↊ and ↋, other notations use A, T, or X for ten and B or E for eleven. The number twelve is written as 10 in duodecimal, whereas the digit string 12 means 1 dozen and 2 units. Similarly, in duodecimal 100 means 1 gross,1000 means 1 great gross, the number twelve, a superior highly composite number, is the smallest number with four non-trivial factors, and the smallest to include as factors all four numbers within the subitizing range. As a result, duodecimal has been described as the number system. Of its factors,2 and 3 are prime, which means the reciprocals of all 3-smooth numbers have a representation in duodecimal. In particular, the five most elementary fractions all have a terminating representation in duodecimal. This all makes it a convenient number system for computing fractions than most other number systems in common use, such as the decimal, vigesimal, binary. Although the trigesimal and sexagesimal systems do even better in respect, this is at the cost of unwieldy multiplication tables. In this section, numerals are based on decimal places, for example,10 means ten,12 means twelve. Languages using duodecimal number systems are uncommon, germanic languages have special words for 11 and 12, such as eleven and twelve in English. However, they are considered to come from Proto-Germanic *ainlif and *twalif, historically, units of time in many civilizations are duodecimal. There are twelve signs of the zodiac, twelve months in a year, traditional Chinese calendars, clocks, and compasses are based on the twelve Earthly Branches. There are 12 inches in a foot,12 troy ounces in a troy pound,12 old British pence in a shilling,24 hours in a day. The Romans used a system based on 12, including the uncia which became both the English words ounce and inch. The importance of 12 has been attributed to the number of cycles in a year. It is possible to count to 12 with the acting as a pointer