Stellar classification
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines; each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary due to the temperature of the photosphere, although in some cases there are true abundance differences; the spectral class of a star is a short code summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are classified under the Morgan-Keenan system using the letters O, B, A, F, G, K, M, a sequence from the hottest to the coolest; each letter class is subdivided using a numeric digit with 0 being hottest and 9 being coolest. The sequence has been expanded with classes for other stars and star-like objects that do not fit in the classical system, such as class D for white dwarfs and classes S and C for carbon stars.
In the MK system, a luminosity class is added to the spectral class using Roman numerals. This is based on the width of certain absorption lines in the star's spectrum, which vary with the density of the atmosphere and so distinguish giant stars from dwarfs. Luminosity class 0 or Ia+ is used for hypergiants, class I for supergiants, class II for bright giants, class III for regular giants, class IV for sub-giants, class V for main-sequence stars, class sd for sub-dwarfs, class D for white dwarfs; the full spectral class for the Sun is G2V, indicating a main-sequence star with a temperature around 5,800 K. The conventional color description takes into account only the peak of the stellar spectrum. In actuality, stars radiate in all parts of the spectrum; because all spectral colors combined appear white, the actual apparent colors the human eye would observe are far lighter than the conventional color descriptions would suggest. This characteristic of'lightness' indicates that the simplified assignment of colors within the spectrum can be misleading.
Excluding color-contrast illusions in dim light, there are indigo, or violet stars. Red dwarfs are a deep shade of orange, brown dwarfs do not appear brown, but hypothetically would appear dim grey to a nearby observer; the modern classification system is known as the Morgan–Keenan classification. Each star is assigned a spectral class from the older Harvard spectral classification and a luminosity class using Roman numerals as explained below, forming the star's spectral type. Other modern stellar classification systems, such as the UBV system, are based on color indexes—the measured differences in three or more color magnitudes; those numbers are given labels such as "U-V" or "B-V", which represent the colors passed by two standard filters. The Harvard system is a one-dimensional classification scheme by astronomer Annie Jump Cannon, who re-ordered and simplified a prior alphabetical system. Stars are grouped according to their spectral characteristics by single letters of the alphabet, optionally with numeric subdivisions.
Main-sequence stars vary in surface temperature from 2,000 to 50,000 K, whereas more-evolved stars can have temperatures above 100,000 K. Physically, the classes indicate the temperature of the star's atmosphere and are listed from hottest to coldest; the spectral classes O through M, as well as other more specialized classes discussed are subdivided by Arabic numerals, where 0 denotes the hottest stars of a given class. For example, A0 denotes A9 denotes the coolest ones. Fractional numbers are allowed; the Sun is classified as G2. Conventional color descriptions are traditional in astronomy, represent colors relative to the mean color of an A class star, considered to be white; the apparent color descriptions are what the observer would see if trying to describe the stars under a dark sky without aid to the eye, or with binoculars. However, most stars in the sky, except the brightest ones, appear white or bluish white to the unaided eye because they are too dim for color vision to work. Red supergiants are cooler and redder than dwarfs of the same spectral type, stars with particular spectral features such as carbon stars may be far redder than any black body.
The fact that the Harvard classification of a star indicated its surface or photospheric temperature was not understood until after its development, though by the time the first Hertzsprung–Russell diagram was formulated, this was suspected to be true. In the 1920s, the Indian physicist Meghnad Saha derived a theory of ionization by extending well-known ideas in physical chemistry pertaining to the dissociation of molecules to the ionization of atoms. First he applied it to the solar chromosphere to stellar spectra. Harvard astronomer Cecilia Payne demonstrated that the O-B-A-F-G-K-M spectral sequence is a sequence in temperature; because the classification sequence predates our understanding that it is a temperature sequence, the placement of a spectrum into a given subtype, such as B3 or A7, depends upon estimates of the strengths of absorption features in stellar spectra. As a result, these subtypes are not evenly divided into any sort of mathematically representable intervals; the Yerkes spectral classification called the MKK system from the authors' initial
Effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is used as an estimate of a body's surface temperature when the body's emissivity curve is not known; when the star's or planet's net emissivity in the relevant wavelength band is less than unity, the actual temperature of the body will be higher than the effective temperature. The net emissivity may be low due to surface or atmospheric properties, including greenhouse effect; the effective temperature of a star is the temperature of a black body with the same luminosity per surface area as the star and is defined according to the Stefan–Boltzmann law FBol = σTeff4. Notice that the total luminosity of a star is L = 4πR2σTeff4, where R is the stellar radius; the definition of the stellar radius is not straightforward. More rigorously the effective temperature corresponds to the temperature at the radius, defined by a certain value of the Rosseland optical depth within the stellar atmosphere.
The effective temperature and the bolometric luminosity are the two fundamental physical parameters needed to place a star on the Hertzsprung–Russell diagram. Both effective temperature and bolometric luminosity depend on the chemical composition of a star; the effective temperature of our Sun is around 5780 kelvins. Stars have a decreasing temperature gradient; the "core temperature" of the Sun—the temperature at the centre of the Sun where nuclear reactions take place—is estimated to be 15,000,000 K. The color index of a star indicates its temperature from the cool—by stellar standards—red M stars that radiate in the infrared to the hot blue O stars that radiate in the ultraviolet; the effective temperature of a star indicates the amount of heat that the star radiates per unit of surface area. From the warmest surfaces to the coolest is the sequence of stellar classifications known as O, B, A, F, G, K, M. A red star could be a tiny red dwarf, a star of feeble energy production and a small surface or a bloated giant or supergiant star such as Antares or Betelgeuse, either of which generates far greater energy but passes it through a surface so large that the star radiates little per unit of surface area.
A star near the middle of the spectrum, such as the modest Sun or the giant Capella radiates more energy per unit of surface area than the feeble red dwarf stars or the bloated supergiants, but much less than such a white or blue star as Vega or Rigel. To find the effective temperature of a planet, it can be calculated by equating the power received by the planet to the known power emitted by a blackbody of temperature T. Take the case of a planet at a distance D from the star, of luminosity L. Assuming the star radiates isotropically and that the planet is a long way from the star, the power absorbed by the planet is given by treating the planet as a disc of radius r, which intercepts some of the power, spread over the surface of a sphere of radius D; the calculation assumes the planet reflects some of the incoming radiation by incorporating a parameter called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo of 0 means all of it is absorbed; the expression for absorbed power is then: P a b s = L r 2 4 D 2 The next assumption we can make is that the entire planet is at the same temperature T, that the planet radiates as a blackbody.
The Stefan–Boltzmann law gives an expression for the power radiated by the planet: P r a d = 4 π r 2 σ T 4 Equating these two expressions and rearranging gives an expression for the effective temperature: T = L 16 π σ D 2 4 Note that the planet's radius has cancelled out of the final expression. The effective temperature for Jupiter from this calculation is 88 K and 51 Pegasi b is 1,258 K. A better estimate of effective temperature for some planets, such as Jupiter, would need to include the internal heating as a power input; the actual temperature depends on atmosphere effects. The actual temperature from spectroscopic analysis for HD 209458 b is 1,130 K, but the effective temperature is 1,359 K; the internal heating within Jupiter raises the effective temperature to about 152 K. The surface temperature of a planet can be estimated by modifying the effective-temperature calculation to account for emissivity and temperature variation; the area of the planet that absorbs the power from the star is Aabs, some fraction of the total surface area Atotal = 4πr2, where r is the radius of the planet.
This area intercepts some of the power, spread over the surface of a sphere of radius D. We allow the planet to reflect some of the incoming radiation by incorporating a parameter a called the albedo. An albedo of 1 means that all the radiation is reflected, an albedo
Apparent magnitude
The apparent magnitude of an astronomical object is a number, a measure of its brightness as seen by an observer on Earth. The magnitude scale is logarithmic. A difference of 1 in magnitude corresponds to a change in brightness by a factor of 5√100, or about 2.512. The brighter an object appears, the lower its magnitude value, with the brightest astronomical objects having negative apparent magnitudes: for example Sirius at −1.46. The measurement of apparent magnitudes or brightnesses of celestial objects is known as photometry. Apparent magnitudes are used to quantify the brightness of sources at ultraviolet and infrared wavelengths. An apparent magnitude is measured in a specific passband corresponding to some photometric system such as the UBV system. In standard astronomical notation, an apparent magnitude in the V filter band would be denoted either as mV or simply as V, as in "mV = 15" or "V = 15" to describe a 15th-magnitude object; the scale used to indicate magnitude originates in the Hellenistic practice of dividing stars visible to the naked eye into six magnitudes.
The brightest stars in the night sky were said to be of first magnitude, whereas the faintest were of sixth magnitude, the limit of human visual perception. Each grade of magnitude was considered twice the brightness of the following grade, although that ratio was subjective as no photodetectors existed; this rather crude scale for the brightness of stars was popularized by Ptolemy in his Almagest and is believed to have originated with Hipparchus. In 1856, Norman Robert Pogson formalized the system by defining a first magnitude star as a star, 100 times as bright as a sixth-magnitude star, thereby establishing the logarithmic scale still in use today; this implies that a star of magnitude m is about 2.512 times as bright as a star of magnitude m + 1. This figure, the fifth root of 100, became known as Pogson's Ratio; the zero point of Pogson's scale was defined by assigning Polaris a magnitude of 2. Astronomers discovered that Polaris is variable, so they switched to Vega as the standard reference star, assigning the brightness of Vega as the definition of zero magnitude at any specified wavelength.
Apart from small corrections, the brightness of Vega still serves as the definition of zero magnitude for visible and near infrared wavelengths, where its spectral energy distribution approximates that of a black body for a temperature of 11000 K. However, with the advent of infrared astronomy it was revealed that Vega's radiation includes an Infrared excess due to a circumstellar disk consisting of dust at warm temperatures. At shorter wavelengths, there is negligible emission from dust at these temperatures. However, in order to properly extend the magnitude scale further into the infrared, this peculiarity of Vega should not affect the definition of the magnitude scale. Therefore, the magnitude scale was extrapolated to all wavelengths on the basis of the black-body radiation curve for an ideal stellar surface at 11000 K uncontaminated by circumstellar radiation. On this basis the spectral irradiance for the zero magnitude point, as a function of wavelength, can be computed. Small deviations are specified between systems using measurement apparatuses developed independently so that data obtained by different astronomers can be properly compared, but of greater practical importance is the definition of magnitude not at a single wavelength but applying to the response of standard spectral filters used in photometry over various wavelength bands.
With the modern magnitude systems, brightness over a wide range is specified according to the logarithmic definition detailed below, using this zero reference. In practice such apparent magnitudes do not exceed 30; the brightness of Vega is exceeded by four stars in the night sky at visible wavelengths as well as the bright planets Venus and Jupiter, these must be described by negative magnitudes. For example, the brightest star of the celestial sphere, has an apparent magnitude of −1.4 in the visible. Negative magnitudes for other bright astronomical objects can be found in the table below. Astronomers have developed other photometric zeropoint systems as alternatives to the Vega system; the most used is the AB magnitude system, in which photometric zeropoints are based on a hypothetical reference spectrum having constant flux per unit frequency interval, rather than using a stellar spectrum or blackbody curve as the reference. The AB magnitude zeropoint is defined such that an object's AB and Vega-based magnitudes will be equal in the V filter band.
As the amount of light received by a telescope is reduced by transmission through the Earth's atmosphere, any measurement of apparent magnitude is corrected for what it would have been as seen from above the atmosphere. The dimmer an object appears, the higher the numerical value given to its apparent magnitude, with a difference of 5 magnitudes corresponding to a brightness factor of 100. Therefore, the apparent magnitude m, in the spectral band x, would be given by m x = − 5 log 100 , more expressed in terms of common logarithms as m x
Metallicity
In astronomy, metallicity is used to describe the abundance of elements present in an object that are heavier than hydrogen or helium. Most of the physical matter in the Universe is in the form of hydrogen and helium, so astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium"; this usage is distinct from the usual physical definition of a solid metal. For example and nebulae with high abundances of carbon, nitrogen and neon are called "metal-rich" in astrophysical terms though those elements are non-metals in chemistry; the presence of heavier elements hails from stellar nucleosynthesis, the theory that the majority of elements heavier than hydrogen and helium in the Universe are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing recycling materials for the birth of new stars, it follows that older generations of stars, which formed in the metal-poor early Universe have lower metallicities than those of younger generations, which formed in a more metal-rich Universe.
Observed changes in the chemical abundances of different types of stars, based on the spectral peculiarities that were attributed to metallicity, led astronomer Walter Baade in 1944 to propose the existence of two different populations of stars. These became known as Population I and Population II stars. A third stellar population was introduced in 1978, known as Population III stars; these metal-poor stars were theorised to have been the "first-born" stars created in the Universe. Astronomers use several different methods to describe and approximate metal abundances, depending on the available tools and the object of interest; some methods include determining the fraction of mass, attributed to gas versus metals, or measuring the ratios of the number of atoms of two different elements as compared to the ratios found in the Sun. Stellar composition is simply defined by the parameters X, Y and Z. Here X is the mass fraction of hydrogen, Y is the mass fraction of helium, Z is the mass fraction of all the remaining chemical elements.
Thus X + Y + Z = 1.00. In most stars, nebulae, H II regions, other astronomical sources and helium are the two dominant elements; the hydrogen mass fraction is expressed as X ≡ m H / M, where M is the total mass of the system, m H is the fractional mass of the hydrogen it contains. The helium mass fraction is denoted as Y ≡ m He / M; the remainder of the elements are collectively referred to as "metals", the metallicity—the mass fraction of elements heavier than helium—can be calculated as Z = ∑ i > He m i M = 1 − X − Y. For the surface of the Sun, these parameters are measured to have the following values: Due to the effects of stellar evolution, neither the initial composition nor the present day bulk composition of the Sun is the same as its present-day surface composition; the overall stellar metallicity is defined using the total iron content of the star, as iron is among the easiest to measure with spectral observations in the visible spectrum. The abundance ratio is defined as the logarithm of the ratio of a star's iron abundance compared to that of the Sun and is expressed thus: = log 10 star − log 10 sun, where N Fe and N H are the number of iron and hydrogen atoms per unit of volume respectively.
The unit used for metallicity is the dex, contraction of "decimal exponent". By this formulation, stars with a higher metallicity than the Sun have a positive logarithmic value, whereas those with a lower metallicity than the Sun have a negative value. For example, stars with a value of +1 have 10 times the metallicity of the Sun. Young Population I stars have higher iron-to-hydrogen ratios than older Population II stars. Primordial Population III stars are estimated to have a metallicity of less than −6.0, that is, less than a millionth of the abundance of iron in the Sun. The same notation is used to express variations in abundances between other the individual elements as compared to solar proportions. For example, the notati
Minute and second of arc
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn – it is for this reason that the Earth's circumference is exactly 21,600 nautical miles. A minute of arc is π/10800 of a radian. A second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, π/648000 of a radian; these units originated in Babylonian astronomy as sexagesimal subdivisions of the degree. To express smaller angles, standard SI prefixes can be employed; the number of square arcminutes in a complete sphere is 4 π 2 = 466 560 000 π ≈ 148510660 square arcminutes. The names "minute" and "second" have nothing to do with the identically named units of time "minute" or "second"; the identical names reflect the ancient Babylonian number system, based on the number 60. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted.
One arcminute is thus written 1′. It is abbreviated as arcmin or amin or, less the prime with a circumflex over it; the standard symbol for the arcsecond is the double prime, though a double quote is used where only ASCII characters are permitted. One arcsecond is thus written 1″, it is abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations, the preference being for degrees and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which display latitude and longitude in the latter format by default; the full moon's average apparent size is about 31 arcminutes. An arcminute is the resolution of the human eye. An arcsecond is the angle subtended by a U. S. dime coin at a distance of 4 kilometres. An arcsecond is the angle subtended by an object of diameter 725.27 km at a distance of one astronomical unit, an object of diameter 45866916 km at one light-year, an object of diameter one astronomical unit at a distance of one parsec, by definition.
A milliarcsecond is about the size of a dime atop the Eiffel Tower. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth. Notable examples of size in arcseconds are: Hubble Space Telescope has calculational resolution of 0.05 arcseconds and actual resolution of 0.1 arcseconds, close to the diffraction limit. Crescent Venus measures between 66 seconds of arc. Since antiquity the arcminute and arcsecond have been used in astronomy. In the ecliptic coordinate system and longitude; the principal exception is right ascension in equatorial coordinates, measured in time units of hours and seconds. The arcsecond is often used to describe small astronomical angles such as the angular diameters of planets, the proper motion of stars, the separation of components of binary star systems, parallax, the small change of position of a star in the course of a year or of a solar system body as the Earth rotates.
These small angles may be written in milliarcseconds, or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements, it is the distance at which the mean radius of the Earth's orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia, launched in 2013, can approximate star positions to 7 microarcseconds. Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric seeing, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond. Space telescopes are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.
Minutes and seconds of arc are used in cartography and navigation. At sea level one minute of arc
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim
Orbital eccentricity
The orbital eccentricity of an astronomical object is a parameter that determines the amount by which its orbit around another body deviates from a perfect circle. A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit, greater than 1 is a hyperbola; the term derives its name from the parameters of conic sections, as every Kepler orbit is a conic section. It is used for the isolated two-body problem, but extensions exist for objects following a Klemperer rosette orbit through the galaxy. In a two-body problem with inverse-square-law force, every orbit is a Kepler orbit; the eccentricity of this Kepler orbit is a non-negative number. The eccentricity may take the following values: circular orbit: e = 0 elliptic orbit: 0 < e < 1 parabolic trajectory: e = 1 hyperbolic trajectory: e > 1 The eccentricity e is given by e = 1 + 2 E L 2 m red α 2 where E is the total orbital energy, L is the angular momentum, mred is the reduced mass, α the coefficient of the inverse-square law central force such as gravity or electrostatics in classical physics: F = α r 2 or in the case of a gravitational force: e = 1 + 2 ε h 2 μ 2 where ε is the specific orbital energy, μ the standard gravitational parameter based on the total mass, h the specific relative angular momentum.
For values of e from 0 to 1 the orbit's shape is an elongated ellipse. The limit case between an ellipse and a hyperbola, when e equals 1, is parabola. Radial trajectories are classified as elliptic, parabolic, or hyperbolic based on the energy of the orbit, not the eccentricity. Radial orbits hence eccentricity equal to one. Keeping the energy constant and reducing the angular momentum, elliptic and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1. For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable. For elliptical orbits, a simple proof shows that arcsin yields the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury, one must calculate the inverse sine to find the projection angle of 11.86 degrees. Next, tilt any circular object by that angle and the apparent ellipse projected to your eye will be of that same eccentricity; the word "eccentricity" comes from Medieval Latin eccentricus, derived from Greek ἔκκεντρος ekkentros "out of the center", from ἐκ- ek-, "out of" + κέντρον kentron "center".
"Eccentric" first appeared in English in 1551, with the definition "a circle in which the earth, sun. Etc. deviates from its center". By five years in 1556, an adjectival form of the word had developed; the eccentricity of an orbit can be calculated from the orbital state vectors as the magnitude of the eccentricity vector: e = | e | where: e is the eccentricity vector. For elliptical orbits it can be calculated from the periapsis and apoapsis since rp = a and ra = a, where a is the semimajor axis. E = r a − r p r a + r p = 1 − 2 r a r p + 1 where: ra is the radius at apoapsis. Rp is the radius at periapsis; the eccentricity of an elliptical orbit can be used to obtain the ratio of the periapsis to the apoapsis: r p r a = 1 − e 1 + e For Earth, orbital eccentricity ≈ 0.0167, apoapsis= aphelion and periapsis= perihelion relative to sun. For Earth's annual orbit path, ra/rp ratio = longest_radius / shortest_radius ≈ 1.034 relative to center point of path. The eccentricity of the Earth's orbit is about 0.0167.
Ve