Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam
Astrometry
Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of the Solar System and our galaxy, the Milky Way; the history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis and Aristillus to discover Earth's precession. In doing so, he developed the brightness scale still in use today. Hipparchus compiled a catalogue with their positions. Hipparchus's successor, included a catalogue of 1,022 stars in his work the Almagest, giving their location and brightness. In the 10th century, Abd al-Rahman al-Sufi carried out observations on the stars and described their positions and star color. Ibn Yunus observed more than 10,000 entries for the Sun's position for many years using a large astrolabe with a diameter of nearly 1.4 metres.
His observations on eclipses were still used centuries in Simon Newcomb's investigations on the motion of the Moon, while his other observations of the motions of the planets Jupiter and Saturn inspired Laplace's Obliquity of the Ecliptic and Inequalities of Jupiter and Saturn. In the 15th century, the Timurid astronomer Ulugh Beg compiled the Zij-i-Sultani, in which he catalogued 1,019 stars. Like the earlier catalogs of Hipparchus and Ptolemy, Ulugh Beg's catalogue is estimated to have been precise to within 20 minutes of arc. In the 16th century, Tycho Brahe used improved instruments, including large mural instruments, to measure star positions more than with a precision of 15–35 arcsec. Taqi al-Din measured the right ascension of the stars at the Constantinople Observatory of Taqi ad-Din using the "observational clock" he invented; when telescopes became commonplace, setting circles sped measurements James Bradley first tried to measure stellar parallaxes in 1729. The stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of the Earth's axis.
His cataloguing of 3222 stars was refined in 1807 by Friedrich Bessel, the father of modern astrometry. He made the first measurement of stellar parallax: 0.3 arcsec for the binary star 61 Cygni. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond; this technology made astrometry less expensive. In 1989, the European Space Agency's Hipparcos satellite took astrometry into orbit, where it could be less affected by mechanical forces of the Earth and optical distortions from its atmosphere. Operated from 1989 to 1993, Hipparcos measured large and small angles on the sky with much greater precision than any previous optical telescopes.
During its 4-year run, the positions and proper motions of 118,218 stars were determined with an unprecedented degree of accuracy. A new "Tycho catalog" drew together a database of 1,058,332 to within 20-30 mas. Additional catalogues were compiled for the 23,882 double/multiple stars and 11,597 variable stars analyzed during the Hipparcos mission. Today, the catalogue most used is USNO-B1.0, an all-sky catalogue that tracks proper motions, positions and other characteristics for over one billion stellar objects. During the past 50 years, 7,435 Schmidt camera plates were used to complete several sky surveys that make the data in USNO-B1.0 accurate to within 0.2 arcsec. Apart from the fundamental function of providing astronomers with a reference frame to report their observations in, astrometry is fundamental for fields like celestial mechanics, stellar dynamics and galactic astronomy. In observational astronomy, astrometric techniques help identify stellar objects by their unique motions, it is instrumental for keeping time, in that UTC is the atomic time synchronized to Earth's rotation by means of exact astronomical observations.
Astrometry is an important step in the cosmic distance ladder because it establishes parallax distance estimates for stars in the Milky Way. Astrometry has been used to support claims of extrasolar planet detection by measuring the displacement the proposed planets cause in their parent star's apparent position on the sky, due to their mutual orbit around the center of mass of the system. Astrometry is more accurate in space missions that are not affected by the distorting effects of the Earth's atmosphere. NASA's planned Space Interferometry Mission was to utilize astrometric techniques to detect terrestrial planets orbiting 200 or so of the nearest solar-type stars; the European Space Agency's Gaia Mission, launched in 2013, applies astrometric techniques in its stellar census. In addition to the detection of exoplanets, it can be used to determine their mass. Astrometric measurements are used by astrophysicists to constrain certain models in celestial mechanics. By measuring the velocities of pulsars, it is possible to put a limit on the asymmetry of supernova explosions.
A
Hipparcos
Hipparcos was a scientific satellite of the European Space Agency, launched in 1989 and operated until 1993. It was the first space experiment devoted to precision astrometry, the accurate measurement of the positions of celestial objects on the sky; this permitted the accurate determination of proper motions and parallaxes of stars, allowing a determination of their distance and tangential velocity. When combined with radial velocity measurements from spectroscopy, this pinpointed all six quantities needed to determine the motion of stars; the resulting Hipparcos Catalogue, a high-precision catalogue of more than 118,200 stars, was published in 1997. The lower-precision Tycho Catalogue of more than a million stars was published at the same time, while the enhanced Tycho-2 Catalogue of 2.5 million stars was published in 2000. Hipparcos' follow-up mission, was launched in 2013; the word "Hipparcos" is an acronym for HIgh Precision PARallax COllecting Satellite and a reference to the ancient Greek astronomer Hipparchus of Nicaea, noted for applications of trigonometry to astronomy and his discovery of the precession of the equinoxes.
By the second half of the 20th century, the accurate measurement of star positions from the ground was running into insurmountable barriers to improvements in accuracy for large-angle measurements and systematic terms. Problems were dominated by the effects of the Earth's atmosphere, but were compounded by complex optical terms and gravitational instrument flexures, the absence of all-sky visibility. A formal proposal to make these exacting observations from space was first put forward in 1967. Although proposed to the French space agency CNES, it was considered too complex and expensive for a single national programme, its acceptance within the European Space Agency's scientific programme, in 1980, was the result of a lengthy process of study and lobbying. The underlying scientific motivation was to determine the physical properties of the stars through the measurement of their distances and space motions, thus to place theoretical studies of stellar structure and evolution, studies of galactic structure and kinematics, on a more secure empirical basis.
Observationally, the objective was to provide the positions and annual proper motions for some 100,000 stars with an unprecedented accuracy of 0.002 arcseconds, a target in practice surpassed by a factor of two. The name of the space telescope, "Hipparcos" was an acronym for High Precision Parallax Collecting Satellite, it reflected the name of the ancient Greek astronomer Hipparchus, considered the founder of trigonometry and the discoverer of the precession of the equinoxes; the spacecraft carried a single all-reflective, eccentric Schmidt telescope, with an aperture of 29 cm. A special beam-combining mirror superimposed two fields of view, 58 degrees apart, into the common focal plane; this complex mirror consisted of two mirrors tilted in opposite directions, each occupying half of the rectangular entrance pupil, providing an unvignetted field of view of about 1°×1°. The telescope used a system of grids, at the focal surface, composed of 2688 alternate opaque and transparent bands, with a period of 1.208 arc-sec.
Behind this grid system, an image dissector tube with a sensitive field of view of about 38-arc-sec diameter converted the modulated light into a sequence of photon counts from which the phase of the entire pulse train from a star could be derived. The apparent angle between two stars in the combined fields of view, modulo the grid period, was obtained from the phase difference of the two star pulse trains. Targeting the observation of some 100,000 stars, with an astrometric accuracy of about 0.002 arc-sec, the final Hipparcos Catalogue comprised nearly 120,000 stars with a median accuracy of better than 0.001 arc-sec. An additional photomultiplier system viewed a beam splitter in the optical path and was used as a star mapper, its purpose was to monitor and determine the satellite attitude, in the process, to gather photometric and astrometric data of all stars down to about 11th magnitude. These measurements were made in two broad bands corresponding to B and V in the UBV photometric system.
The positions of these latter stars were to be determined to a precision of 0.03 arc-sec, a factor of 25 less than the main mission stars. Targeting the observation of around 400,000 stars, the resulting Tycho Catalogue comprised just over 1 million stars, with a subsequent analysis extending this to the Tycho-2 Catalogue of about 2.5 million stars. The attitude of the spacecraft about its center of gravity was controlled to scan the celestial sphere in a regular precessional motion maintaining a constant inclination between the spin axis and the direction to the Sun; the spacecraft spun around its Z-axis at the rate of 11.25 revolutions/day at an angle of 43° to the Sun. The Z-axis rotated about the sun-satellite line at 6.4 revolutions/year. The spacecraft consisted of two platforms and six vertical panels, all made of aluminum honeycomb; the solar array consisted of three deployable sections. Two S-band antennas were located on the top and bottom of the spacecraft, providing an omni-directional downlink data rate of 24 kbit/s.
An attitude and orbit-control subsystem ensured correct dynamic attitude control and determination during the operational lifetim
Sun
The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process, it is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers, or 109 times that of Earth, its mass is about 330,000 times that of Earth. It accounts for about 99.86% of the total mass of the Solar System. Three quarters of the Sun's mass consists of hydrogen; the Sun is a G-type main-sequence star based on its spectral class. As such, it is informally and not accurately referred to as a yellow dwarf, it formed 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System; the central mass became so hot and dense that it initiated nuclear fusion in its core. It is thought that all stars form by this process.
The Sun is middle-aged. It fuses about 600 million tons of hydrogen into helium every second, converting 4 million tons of matter into energy every second as a result; this energy, which can take between 10,000 and 170,000 years to escape from its core, is the source of the Sun's light and heat. In about 5 billion years, when hydrogen fusion in its core has diminished to the point at which the Sun is no longer in hydrostatic equilibrium, its core will undergo a marked increase in density and temperature while its outer layers expand to become a red giant, it is calculated that the Sun will become sufficiently large to engulf the current orbits of Mercury and Venus, render Earth uninhabitable. After this, it will shed its outer layers and become a dense type of cooling star known as a white dwarf, no longer produce energy by fusion, but still glow and give off heat from its previous fusion; the enormous effect of the Sun on Earth has been recognized since prehistoric times, the Sun has been regarded by some cultures as a deity.
The synodic rotation of Earth and its orbit around the Sun are the basis of solar calendars, one of, the predominant calendar in use today. The English proper name Sun may be related to south. Cognates to English sun appear in other Germanic languages, including Old Frisian sunne, Old Saxon sunna, Middle Dutch sonne, modern Dutch zon, Old High German sunna, modern German Sonne, Old Norse sunna, Gothic sunnō. All Germanic terms for the Sun stem from Proto-Germanic *sunnōn; the Latin name for the Sun, Sol, is not used in everyday English. Sol is used by planetary astronomers to refer to the duration of a solar day on another planet, such as Mars; the related word solar is the usual adjectival term used for the Sun, in terms such as solar day, solar eclipse, Solar System. A mean Earth solar day is 24 hours, whereas a mean Martian'sol' is 24 hours, 39 minutes, 35.244 seconds. The English weekday name Sunday stems from Old English and is a result of a Germanic interpretation of Latin dies solis, itself a translation of the Greek ἡμέρα ἡλίου.
The Sun is a G-type main-sequence star. The Sun has an absolute magnitude of +4.83, estimated to be brighter than about 85% of the stars in the Milky Way, most of which are red dwarfs. The Sun is heavy-element-rich, star; the formation of the Sun may have been triggered by shockwaves from more nearby supernovae. This is suggested by a high abundance of heavy elements in the Solar System, such as gold and uranium, relative to the abundances of these elements in so-called Population II, heavy-element-poor, stars; the heavy elements could most plausibly have been produced by endothermic nuclear reactions during a supernova, or by transmutation through neutron absorption within a massive second-generation star. The Sun is by far the brightest object in the Earth's sky, with an apparent magnitude of −26.74. This is about 13 billion times brighter than the next brightest star, which has an apparent magnitude of −1.46. The mean distance of the Sun's center to Earth's center is 1 astronomical unit, though the distance varies as Earth moves from perihelion in January to aphelion in July.
At this average distance, light travels from the Sun's horizon to Earth's horizon in about 8 minutes and 19 seconds, while light from the closest points of the Sun and Earth takes about two seconds less. The energy of this sunlight supports all life on Earth by photosynthesis, drives Earth's climate and weather; the Sun does not have a definite boundary, but its density decreases exponentially with increasing height above the photosphere. For the purpose of measurement, the Sun's radius is considered to be the distance from its center to the edge of the photosphere, the apparent visible surface of the Sun. By this measure, the Sun is a near-perfect sphere with an oblateness estimated at about 9 millionths, which means that its polar diameter differs from its equatorial diameter by only 10 kilometres; the tidal effect of the planets is weak and does not affect the shape of the Sun. The Sun rotates faster at its equator than at its poles; this differential rotation is caused by convective motion
Binary star
A binary star is a star system consisting of two stars orbiting around their common barycenter. Systems of two or more stars are called multiple star systems; these systems when more distant appear to the unaided eye as a single point of light, are revealed as multiple by other means. Research over the last two centuries suggests that half or more of visible stars are part of multiple star systems; the term double star is used synonymously with binary star. Optical doubles are so called because the two stars appear close together in the sky as seen from the Earth, their "doubleness" depends only on this optical effect. A double star can be revealed as optical by means of differences in their parallax measurements, proper motions, or radial velocities. Most known double stars have not been studied adequately to determine whether they are optical doubles or doubles physically bound through gravitation into a multiple star system. Binary star systems are important in astrophysics because calculations of their orbits allow the masses of their component stars to be directly determined, which in turn allows other stellar parameters, such as radius and density, to be indirectly estimated.
This determines an empirical mass-luminosity relationship from which the masses of single stars can be estimated. Binary stars are detected optically, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known, they may be detected by indirect techniques, such as spectroscopy or astrometry. If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other. If components in binary star systems are close enough they can gravitationally distort their mutual outer stellar atmospheres. In some cases, these close binary systems can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Sirius, Cygnus X-1. Binary stars are common as the nuclei of many planetary nebulae, are the progenitors of both novae and type Ia supernovae; the term binary was first used in this context by Sir William Herschel in 1802, when he wrote: If, on the contrary, two stars should be situated near each other, at the same time so far insulated as not to be materially affected by the attractions of neighbouring stars, they will compose a separate system, remain united by the bond of their own mutual gravitation towards each other.
This should be called a real double star. By the modern definition, the term binary star is restricted to pairs of stars which revolve around a common center of mass. Binary stars which can be resolved with a telescope or interferometric methods are known as visual binaries. For most of the known visual binary stars one whole revolution has not been observed yet, they are observed to have travelled along a curved path or a partial arc; the more general term double star is used for pairs of stars which are seen to be close together in the sky. This distinction is made in languages other than English. Double stars may be binary systems or may be two stars that appear to be close together in the sky but have vastly different true distances from the Sun; the latter are termed optical optical pairs. Since the invention of the telescope, many pairs of double stars have been found. Early examples include Acrux. Mizar, in the Big Dipper, was observed to be double by Giovanni Battista Riccioli in 1650; the bright southern star Acrux, in the Southern Cross, was discovered to be double by Father Fontenay in 1685.
John Michell was the first to suggest that double stars might be physically attached to each other when he argued in 1767 that the probability that a double star was due to a chance alignment was small. William Herschel began observing double stars in 1779 and soon thereafter published catalogs of about 700 double stars. By 1803, he had observed changes in the relative positions in a number of double stars over the course of 25 years, concluded that they must be binary systems. Since this time, many more double stars have been measured; the Washington Double Star Catalog, a database of visual double stars compiled by the United States Naval Observatory, contains over 100,000 pairs of double stars, including optical doubles as well as binary stars. Orbits are known for only a few thousand of these double stars, most have not been ascertained to be either true binaries or optical double stars; this can be determined by observing the relative motion of the pairs. If the motion is part of an orbit, or if the stars have similar radial velocities and the difference in their proper motions is small compared to their common proper motion, the pair is physical.
One of the tasks that remains for visual observers of double stars is to obtain sufficient observations to prove or disprove gravitational connection. Binary stars are classified into four types accordi
Star
A star is type of astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth; the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way. For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and radiates into outer space. All occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, for some stars by supernova nucleosynthesis when it explodes.
Near the end of its life, a star can contain degenerate matter. Astronomers can determine the mass, age and many other properties of a star by observing its motion through space, its luminosity, spectrum respectively; the total mass of a star is the main factor. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram. Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined. A star's life begins with the gravitational collapse of a gaseous nebula of material composed of hydrogen, along with helium and trace amounts of heavier elements; when the stellar core is sufficiently dense, hydrogen becomes converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes.
The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements in shells around the core; as the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole. Binary and multi-star systems consist of two or more stars that are gravitationally bound and move around each other in stable orbits; when two such stars have a close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy. Stars have been important to civilizations throughout the world, they have used for celestial navigation and orientation.
Many ancient astronomers believed that stars were permanently affixed to a heavenly sphere and that they were immutable. By convention, astronomers grouped stars into constellations and used them to track the motions of the planets and the inferred position of the Sun; the motion of the Sun against the background stars was used to create calendars, which could be used to regulate agricultural practices. The Gregorian calendar used nearly everywhere in the world, is a solar calendar based on the angle of the Earth's rotational axis relative to its local star, the Sun; the oldest dated star chart was the result of ancient Egyptian astronomy in 1534 BC. The earliest known star catalogues were compiled by the ancient Babylonian astronomers of Mesopotamia in the late 2nd millennium BC, during the Kassite Period; the first star catalogue in Greek astronomy was created by Aristillus in 300 BC, with the help of Timocharis. The star catalog of Hipparchus included 1020 stars, was used to assemble Ptolemy's star catalogue.
Hipparchus is known for the discovery of the first recorded nova. Many of the constellations and star names in use today derive from Greek astronomy. In spite of the apparent immutability of the heavens, Chinese astronomers were aware that new stars could appear. In 185 AD, they were the first to observe and write about a supernova, now known as the SN 185; the brightest stellar event in recorded history was the SN 1006 supernova, observed in 1006 and written about by the Egyptian astronomer Ali ibn Ridwan and several Chinese astronomers. The SN 1054 supernova, which gave birth to the Crab Nebula, was observed by Chinese and Islamic astronomers. Medieval Islamic astronomers gave Arabic names to many stars that are still used today and they invented numerous astronomical instruments that could compute the positions of the stars, they built the first large observatory research institutes for the purpose of producing Zij star catalogues. Among these, the Book of Fixed Stars was written by the Persian astronomer Abd al-Rahman al-Sufi, who observed a number of stars, star clusters and galaxies.
According to A. Zahoor, in the 11th century, the Persian polymath scholar Abu Rayhan Biruni described the Milky
Kelvin
The Kelvin scale is an absolute thermodynamic temperature scale using as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin is the base unit of temperature in the International System of Units; until 2018, the kelvin was defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. In other words, it was defined such that the triple point of water is 273.16 K. On 16 November 2018, a new definition was adopted, in terms of a fixed value of the Boltzmann constant. For legal metrology purposes, the new definition will come into force on 20 May 2019; the Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Thomson, 1st Baron Kelvin, who wrote of the need for an "absolute thermometric scale". Unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or written as a degree; the kelvin is the primary unit of temperature measurement in the physical sciences, but is used in conjunction with the degree Celsius, which has the same magnitude.
The definition implies that absolute zero is equivalent to −273.15 °C. In 1848, William Thomson, made Lord Kelvin, wrote in his paper, On an Absolute Thermometric Scale, of the need for a scale whereby "infinite cold" was the scale's null point, which used the degree Celsius for its unit increment. Kelvin calculated; this absolute scale is known today as the Kelvin thermodynamic temperature scale. Kelvin's value of "−273" was the negative reciprocal of 0.00366—the accepted expansion coefficient of gas per degree Celsius relative to the ice point, giving a remarkable consistency to the accepted value. In 1954, Resolution 3 of the 10th General Conference on Weights and Measures gave the Kelvin scale its modern definition by designating the triple point of water as its second defining point and assigned its temperature to 273.16 kelvins. In 1967/1968, Resolution 3 of the 13th CGPM renamed the unit increment of thermodynamic temperature "kelvin", symbol K, replacing "degree Kelvin", symbol °K. Furthermore, feeling it useful to more explicitly define the magnitude of the unit increment, the 13th CGPM held in Resolution 4 that "The kelvin, unit of thermodynamic temperature, is equal to the fraction 1/273.16 of the thermodynamic temperature of the triple point of water."In 2005, the Comité International des Poids et Mesures, a committee of the CGPM, affirmed that for the purposes of delineating the temperature of the triple point of water, the definition of the Kelvin thermodynamic temperature scale would refer to water having an isotopic composition specified as Vienna Standard Mean Ocean Water.
In 2018, Resolution A of the 26th CGPM adopted a significant redefinition of SI base units which included redefining the Kelvin in terms of a fixed value for the Boltzmann constant of 1.380649×10−23 J/K. When spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm; when reference is made to the "Kelvin scale", the word "kelvin"—which is a noun—functions adjectivally to modify the noun "scale" and is capitalized. As with most other SI unit symbols there is a space between the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a "degree", the same as with the other temperature scales at the time, it was distinguished from the other scales with either the adjective suffix "Kelvin" or with "absolute" and its symbol was °K. The latter term, the unit's official name from 1948 until 1954, was ambiguous since it could be interpreted as referring to the Rankine scale. Before the 13th CGPM, the plural form was "degrees absolute".
The 13th CGPM changed the unit name to "kelvin". The omission of "degree" indicates that it is not relative to an arbitrary reference point like the Celsius and Fahrenheit scales, but rather an absolute unit of measure which can be manipulated algebraically. In science and engineering, degrees Celsius and kelvins are used in the same article, where absolute temperatures are given in degrees Celsius, but temperature intervals are given in kelvins. E.g. "its measured value was 0.01028 °C with an uncertainty of 60 µK." This practice is permissible because the degree Celsius is a special name for the kelvin for use in expressing relative temperatures, the magnitude of the degree Celsius is equal to that of the kelvin. Notwithstanding that the official endorsement provided by Resolution 3 of the 13th CGPM states "a temperature interval may be expressed in degrees Celsius", the practice of using both °C and K is widespread throughout the scientific world; the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been adopted.
In 2005 the CIPM embarked on a programme to redefine the kelvin using a more experimentally rigorous methodology. In particular, the committee proposed redefining the kelvin such that Boltzmann's constant takes the exact value 1.3806505×10−23 J/K. The committee had hoped tha