1.
Differential geometry
–
Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century, since the late 19th century, differential geometry has grown into a field concerned more generally with the geometric structures on differentiable manifolds. Differential geometry is related to differential topology and the geometric aspects of the theory of differential equations. The differential geometry of surfaces captures many of the key ideas, Differential geometry arose and developed as a result of and in connection to the mathematical analysis of curves and surfaces. These unanswered questions indicated greater, hidden relationships, initially applied to the Euclidean space, further explorations led to non-Euclidean space, and metric and topological spaces. Riemannian geometry studies Riemannian manifolds, smooth manifolds with a Riemannian metric and this is a concept of distance expressed by means of a smooth positive definite symmetric bilinear form defined on the tangent space at each point. Various concepts based on length, such as the arc length of curves, area of plane regions, the notion of a directional derivative of a function from multivariable calculus is extended in Riemannian geometry to the notion of a covariant derivative of a tensor. Many concepts and techniques of analysis and differential equations have been generalized to the setting of Riemannian manifolds, a distance-preserving diffeomorphism between Riemannian manifolds is called an isometry. This notion can also be defined locally, i. e. for small neighborhoods of points, any two regular curves are locally isometric. In higher dimensions, the Riemann curvature tensor is an important pointwise invariant associated with a Riemannian manifold that measures how close it is to being flat, an important class of Riemannian manifolds is the Riemannian symmetric spaces, whose curvature is not necessarily constant. These are the closest analogues to the plane and space considered in Euclidean and non-Euclidean geometry. Pseudo-Riemannian geometry generalizes Riemannian geometry to the case in which the metric tensor need not be positive-definite, a special case of this is a Lorentzian manifold, which is the mathematical basis of Einsteins general relativity theory of gravity. Finsler geometry has the Finsler manifold as the object of study. This is a manifold with a Finsler metric, i. e. a Banach norm defined on each tangent space. Riemannian manifolds are special cases of the more general Finsler manifolds. A Finsler structure on a manifold M is a function F, TM → [0, ∞) such that, F = |m|F for all x, y in TM, F is infinitely differentiable in TM −, symplectic geometry is the study of symplectic manifolds. A symplectic manifold is an almost symplectic manifold for which the symplectic form ω is closed, a diffeomorphism between two symplectic manifolds which preserves the symplectic form is called a symplectomorphism. Non-degenerate skew-symmetric bilinear forms can only exist on even-dimensional vector spaces, in dimension 2, a symplectic manifold is just a surface endowed with an area form and a symplectomorphism is an area-preserving diffeomorphism

2.
Smoothness
–
In mathematical analysis, the smoothness of a function is a property measured by the number of derivatives it has which are continuous. A smooth function is a function that has derivatives of all orders everywhere in its domain, differentiability class is a classification of functions according to the properties of their derivatives. Higher order differentiability classes correspond to the existence of more derivatives, consider an open set on the real line and a function f defined on that set with real values. Let k be a non-negative integer, the function f is said to be of class Ck if the derivatives f′, f′′. The function f is said to be of class C∞, or smooth, if it has derivatives of all orders. The function f is said to be of class Cω, or analytic, if f is smooth, Cω is thus strictly contained in C∞. Bump functions are examples of functions in C∞ but not in Cω, to put it differently, the class C0 consists of all continuous functions. The class C1 consists of all differentiable functions whose derivative is continuous, thus, a C1 function is exactly a function whose derivative exists and is of class C0. In particular, Ck is contained in Ck−1 for every k, C∞, the class of infinitely differentiable functions, is the intersection of the sets Ck as k varies over the non-negative integers. The function f = { x if x ≥0,0 if x <0 is continuous, because cos oscillates as x →0, f ’ is not continuous at zero. Therefore, this function is differentiable but not of class C1, the functions f = | x | k +1 where k is even, are continuous and k times differentiable at all x. But at x =0 they are not times differentiable, so they are of class Ck, the exponential function is analytic, so, of class Cω. The trigonometric functions are also analytic wherever they are defined, the function f is an example of a smooth function with compact support. Let n and m be some positive integers, if f is a function from an open subset of Rn with values in Rm, then f has component functions f1. Each of these may or may not have partial derivatives, the classes C∞ and Cω are defined as before. These criteria of differentiability can be applied to the functions of a differential structure. The resulting space is called a Ck manifold, if one wishes to start with a coordinate-independent definition of the class Ck, one may start by considering maps between Banach spaces. A map from one Banach space to another is differentiable at a point if there is a map which approximates it at that point

3.
Surface (mathematics)
–
In mathematics, a surface is a generalization of a plane which needs not be flat, that is, the curvature is not necessarily zero. This is analogous to a curve generalizing a straight line, there are several more precise definitions, depending on the context and the mathematical tools that are used for the study. Often, a surface is defined by equations that are satisfied by the coordinates of its points and this is the case of the graph of a continuous function of two variables. The set of the zeros of a function of three variables is a surface, which is called an implicit surface, if the defining three-variate function is a polynomial, the surface is an algebraic surface. For example, the sphere is an algebraic surface, as it may be defined by the implicit equation x 2 + y 2 + z 2 −1 =0. A surface may also be defined as the image, in space of dimension at least 3. In this case, one says that one has a parametric surface, for example, the unit sphere may be parametrized by the Euler angles, also called longitude u and latitude v by x = cos cos y = sin cos z = sin . Parametric equations of surfaces are often irregular at some points, for example, all but two points of the unit sphere, are the image, by the above parametrization, of exactly one pair of Euler angles. For the remaining two points, one has cos v =0, and the longitude u may take any values, also, there are surfaces for which there cannot exits a single parametrization that covers the whole surface. Therefore, one often considers surfaces which are parametrized by several parametric equations and this allows defining surfaces in spaces of dimension higher than three, and even abstract surfaces, which are not contained in any other space. On the other hand, this excludes surfaces that have singularities, in classical geometry, a surface is generally defined as a locus of a point or a line. A ruled surface is the locus of a moving line satisfying some constraints, in modern terminology, a surface is a surface. In this article, several kinds of surfaces are considered and compared, a non-ambiguous terminology is thus necessary for distinguish them. Therefore, we call topological surfaces the surfaces that are manifolds of dimension two and we call differential surfaces the surfaces that are differentiable manifolds. Every differential surface is a surface, but the converse is false. For simplicity, unless stated, surface will mean a surface in the Euclidean space of dimension 3 or in R3. A surface, that is not supposed to be included in another space, is called an abstract surface, the graph of a continuous function of two variables, defined over a connected open subset of R2 is a topological surface. If the function is differentiable, the graph is a differential surface, a plane is together an algebraic surface and a differentiable surface

4.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T

5.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space

6.
Surface area
–
The surface area of a solid object is a measure of the total area that the surface of the object occupies. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces and this definition of surface area is based on methods of infinitesimal calculus and involves partial derivatives and double integration. A general definition of area was sought by Henri Lebesgue. Their work led to the development of measure theory, which studies various notions of surface area for irregular objects of any dimension. An important example is the Minkowski content of a surface, while the areas of many simple surfaces have been known since antiquity, a rigorous mathematical definition of area requires a great deal of care. This should provide a function S ↦ A which assigns a real number to a certain class of surfaces that satisfies several natural requirements. The most fundamental property of the area is its additivity. More rigorously, if a surface S is a union of many pieces S1, …, Sr which do not overlap except at their boundaries. Surface areas of polygonal shapes must agree with their geometrically defined area. Since surface area is a notion, areas of congruent surfaces must be the same and the area must depend only on the shape of the surface. This means that surface area is invariant under the group of Euclidean motions and these properties uniquely characterize surface area for a wide class of geometric surfaces called piecewise smooth. Such surfaces consist of many pieces that can be represented in the parametric form S D, r → = r →, ∈ D with a continuously differentiable function r →. The area of a piece is defined by the formula A = ∬ D | r → u × r → v | d u d v. Thus the area of SD is obtained by integrating the length of the vector r → u × r → v to the surface over the appropriate region D in the parametric uv plane. The area of the surface is then obtained by adding together the areas of the pieces. The main formula can be specialized to different classes of surfaces, giving, in particular, formulas for areas of graphs z = f and surfaces of revolution. It was demonstrated by Hermann Schwarz that already for the cylinder, various approaches to a general definition of surface area were developed in the late nineteenth and the early twentieth century by Henri Lebesgue and Hermann Minkowski. While for piecewise smooth surfaces there is a natural notion of surface area, if a surface is very irregular, or rough

7.
Open set
–
In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line. These conditions are very loose, and they allow enormous flexibility in the choice of open sets, in the two extremes, every set can be open, or no set can be open but the space itself and the empty set. In practice, however, open sets are usually chosen to be similar to the intervals of the real line. The notion of an open set provides a way to speak of nearness of points in a topological space. Once a choice of open sets is made, the properties of continuity, connectedness, and compactness, each choice of open sets for a space is called a topology. Although open sets and the topologies that they comprise are of importance in point-set topology. Intuitively, an open set provides a method to distinguish two points, for example, if about one point in a topological space there exists an open set not containing another point, the two points are referred to as topologically distinguishable. In this manner, one may speak of two subsets of a topological space are near without concretely defining a metric on the topological space. Therefore, topological spaces may be seen as a generalization of metric spaces, in the set of all real numbers, one has the natural Euclidean metric, that is, a function which measures the distance between two real numbers, d = |x - y|. Therefore, given a number, one can speak of the set of all points close to that real number. In essence, points within ε of x approximate x to an accuracy of degree ε, note that ε >0 always but as ε becomes smaller and smaller, one obtains points that approximate x to a higher and higher degree of accuracy. For example, if x =0 and ε =1, the points within ε of x are precisely the points of the interval, that is, however, with ε =0.5, the points within ε of x are precisely the points of. Clearly, these points approximate x to a degree of accuracy compared to when ε =1. The previous discussion shows, for the case x =0, in particular, sets of the form give us a lot of information about points close to x =0. Thus, rather than speaking of a concrete Euclidean metric, one may use sets to describe points close to x, thus, we find that in some sense, every real number is distance 0 away from 0. It may help in case to think of the measure as being a binary condition, all things in R are equally close to 0. In general, one refers to the family of sets containing 0, used to approximate 0, as a neighborhood basis, in fact, one may generalize these notions to an arbitrary set, rather than just the real numbers. In this case, given a point of that set, one may define a collection of sets around x, of course, this collection would have to satisfy certain properties for otherwise we may not have a well-defined method to measure distance

8.
Cross product
–
In mathematics and vector algebra, the cross product or vector product is a binary operation on two vectors in three-dimensional space and is denoted by the symbol ×. Given two linearly independent vectors a and b, the product, a × b, is a vector that is perpendicular to both a and b and therefore normal to the plane containing them. It has many applications in mathematics, physics, engineering, and it should not be confused with dot product. If two vectors have the direction or if either one has zero length, then their cross product is zero. The cross product is anticommutative and is distributive over addition, the space R3 together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket. Like the dot product, it depends on the metric of Euclidean space, but if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions. If one adds the further requirement that the product be uniquely defined, the cross product of two vectors a and b is defined only in three-dimensional space and is denoted by a × b. In physics, sometimes the notation a ∧ b is used, if the vectors a and b are parallel, by the above formula, the cross product of a and b is the zero vector 0. Then, the n is coming out of the thumb. Using this rule implies that the cross-product is anti-commutative, i. e. b × a = −. By pointing the forefinger toward b first, and then pointing the finger toward a. Using the cross product requires the handedness of the system to be taken into account. If a left-handed coordinate system is used, the direction of the n is given by the left-hand rule. This, however, creates a problem because transforming from one arbitrary reference system to another, the problem is clarified by realizing that the cross product of two vectors is not a vector, but rather a pseudovector. See cross product and handedness for more detail, in 1881, Josiah Willard Gibbs, and independently Oliver Heaviside, introduced both the dot product and the cross product using a period and an x, respectively, to denote them. These alternative names are widely used in the literature. Both the cross notation and the cross product were possibly inspired by the fact that each scalar component of a × b is computed by multiplying non-corresponding components of a and b. Conversely, a dot product a ⋅ b involves multiplications between corresponding components of a and b, as explained below, the cross product can be expressed in the form of a determinant of a special 3 ×3 matrix

9.
Pushforward (differential)
–
Suppose that φ, M → N is a smooth map between smooth manifolds, then the differential of φ at a point x is, in some sense, the best linear approximation of φ near x. It can be viewed as a generalization of the derivative of ordinary calculus. Explicitly, it is a map from the tangent space of M at x to the tangent space of N at φ. Hence it can be used to push tangent vectors on M forward to tangent vectors on N, the differential of a map φ is also called, by various authors, the derivative or total derivative of φ, and is sometimes itself called the pushforward. Let φ, U → V be a map from an open subset U of Rm to an open subset V of Rn. For any point x in U, the Jacobian of φ at x is the representation of the total derivative of φ at x. We wish to generalize this to the case that φ is a function between any smooth manifolds M and N. Let φ, M → N be a map of smooth manifolds. Given some x ∈ M, the differential of φ at x is a linear map d φ x, T x M → T φ N from the tangent space of M at x to the tangent space of N at φ. The application of dφx to a tangent vector X is sometimes called the pushforward of x by φ, the exact definition of this pushforward depends on the definition one uses for tangent vectors. If one defines tangent vectors as equivalence classes of curves through x then the differential is given by d φ x = ′, here γ is a curve in M with γ = x. In other words, the pushforward of the tangent vector to the curve γ at 0 is just the tangent vector to the curve φ ∘ γ at 0. Alternatively, if tangent vectors are defined as acting on smooth real-valued functions. Here X ∈ TxM, therefore X is a derivation defined on M and f is a smooth real-valued function on N, by definition, the pushforward of X at a given x in M is in TφN and therefore itself is a derivation. Extending by linearity gives the matrix a b = ∂ φ ^ b ∂ u a. Thus the differential is a transformation, between tangent spaces, associated to the smooth map φ at each point. Therefore, in some chosen local coordinates, it is represented by the Jacobian matrix of the smooth map from Rm to Rn. In general the differential need not be invertible, if φ is a local diffeomorphism, then the pushforward at x is invertible and its inverse gives the pullback of TφN

10.
Archimedes of Syracuse
–
Archimedes of Syracuse was a Greek mathematician, physicist, engineer, inventor, and astronomer. Although few details of his life are known, he is regarded as one of the scientists in classical antiquity. He was also one of the first to apply mathematics to physical phenomena, founding hydrostatics and statics and he is credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion. Archimedes died during the Siege of Syracuse when he was killed by a Roman soldier despite orders that he should not be harmed. Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere and a cylinder, unlike his inventions, the mathematical writings of Archimedes were little known in antiquity. Archimedes was born c.287 BC in the city of Syracuse, Sicily, at that time a self-governing colony in Magna Graecia. The date of birth is based on a statement by the Byzantine Greek historian John Tzetzes that Archimedes lived for 75 years, in The Sand Reckoner, Archimedes gives his fathers name as Phidias, an astronomer about whom nothing is known. Plutarch wrote in his Parallel Lives that Archimedes was related to King Hiero II, a biography of Archimedes was written by his friend Heracleides but this work has been lost, leaving the details of his life obscure. It is unknown, for instance, whether he married or had children. During his youth, Archimedes may have studied in Alexandria, Egypt and he referred to Conon of Samos as his friend, while two of his works have introductions addressed to Eratosthenes. Archimedes died c.212 BC during the Second Punic War, according to the popular account given by Plutarch, Archimedes was contemplating a mathematical diagram when the city was captured. A Roman soldier commanded him to come and meet General Marcellus but he declined, the soldier was enraged by this, and killed Archimedes with his sword. Plutarch also gives an account of the death of Archimedes which suggests that he may have been killed while attempting to surrender to a Roman soldier. According to this story, Archimedes was carrying mathematical instruments, and was killed because the thought that they were valuable items. General Marcellus was reportedly angered by the death of Archimedes, as he considered him a valuable asset and had ordered that he not be harmed. Marcellus called Archimedes a geometrical Briareus, the last words attributed to Archimedes are Do not disturb my circles, a reference to the circles in the mathematical drawing that he was supposedly studying when disturbed by the Roman soldier. This quote is given in Latin as Noli turbare circulos meos. The phrase is given in Katharevousa Greek as μὴ μου τοὺς κύκλους τάραττε

11.
Map
–
A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes. Many maps are static, fixed to paper or some other durable medium, although the earliest maps known are of the heavens, geographic maps of territory have a very long tradition and exist from ancient times. The word map comes from the medieval Latin Mappa mundi, wherein mappa meant napkin or cloth, thus, map became the shortened term referring to a two-dimensional representation of the surface of the world. Cartography or map-making is the study and practice of crafting representations of the Earth upon a flat surface, in addition to location information maps may also be used to portray contour lines indicating constant values of elevation, temperature, rainfall, etc. The orientation of a map is the relationship between the directions on the map and the compass directions in reality. The word orient is derived from Latin oriens, meaning East, in the Middle Ages many maps, including the T and O maps, were drawn with East at the top. Today, the most common – but far from universal – cartographic convention is that North is at the top of a map, several kinds of maps are often traditionally not oriented with North at the top, Maps from non-Western traditions are oriented a variety of ways. Old maps of Edo show the Japanese imperial palace as the top, labels on the map are oriented in such a way that you cannot read them properly unless you put the imperial palace above your head. Medieval European T and O maps such as the Hereford Mappa Mundi were centred on Jerusalem with East at the top, indeed, prior to the reintroduction of Ptolemys Geography to Europe around 1400, there was no single convention in the West. Portolan charts, for example, are oriented to the shores they describe, Maps of cities bordering a sea are often conventionally oriented with the sea at the top. Route and channel maps have traditionally been oriented to the road or waterway they describe, polar maps of the Arctic or Antarctic regions are conventionally centred on the pole, the direction North would be towards or away from the centre of the map, respectively. Typical maps of the Arctic have 0° meridian towards the bottom of the page, reversed maps, also known as Upside-Down maps or South-Up maps, reverse the North is up convention and have south at the top. Buckminster Fullers Dymaxion maps are based on a projection of the Earths sphere onto an icosahedron, the resulting triangular pieces may be arranged in any order or orientation. Modern digital GIS maps such as ArcMap typically project north at the top of the map, compass decimal degrees can be converted to math degrees by subtracting them from 450, if the answer is greater than 360, subtract 360. The scale statement may be taken as exact when the region mapped is small enough for the curvature of the Earth to be neglected, over larger regions where the curvature cannot be ignored we must use map projections from the curved surface of the Earth to the plane. Thus for map projections we must introduce the concept of point scale, which is a function of position, although the scale statement is nominal it is usually accurate enough for all but the most precise of measurements. Large scale maps, say 1,10,000, cover relatively small regions in detail and small scale maps, say 1,10,000,000, cover large regions such as nations, continents. The large/small terminology arose from the practice of writing scales as numerical fractions, there is no exact dividing line between large and small but 1/100,000 might well be considered as a medium scale

12.
Map projection
–
A map projection is a systematic transformation of the latitudes and longitudes of locations on the surface of a sphere or an ellipsoid into locations on a plane. Map projections are necessary for creating maps, all map projections distort the surface in some fashion. There is no limit to the number of map projections. More generally, the surfaces of bodies can be mapped even if they are too irregular to be modeled well with a sphere or ellipsoid. Even more generally, projections are the subject of several mathematical fields, including differential geometry. However, map projection refers specifically to a cartographic projection and these useful traits of maps motivate the development of map projections. However, Carl Friedrich Gausss Theorema Egregium proved that a spheres surface cannot be represented on a plane without distortion, the same applies to other reference surfaces used as models for the Earth. Since any map projection is a representation of one of surfaces on a plane. Every distinct map projection distorts in a distinct way, the study of map projections is the characterization of these distortions. Projection is not limited to perspective projections, such as those resulting from casting a shadow on a screen, rather, any mathematical function transforming coordinates from the curved surface to the plane is a projection. Few projections in actual use are perspective, for simplicity, most of this article assumes that the surface to be mapped is that of a sphere. In reality, the Earth and other celestial bodies are generally better modeled as oblate spheroids. These other surfaces can be mapped as well, therefore, more generally, a map projection is any method of flattening a continuous curved surface onto a plane. Many properties can be measured on the Earths surface independent of its geography, some of these properties are, Area Shape Direction Bearing Distance Scale Map projections can be constructed to preserve at least one of these properties, though only in a limited way for most. Each projection preserves or compromises or approximates basic metric properties in different ways, the purpose of the map determines which projection should form the base for the map. Because many purposes exist for maps, a diversity of projections have been created to suit those purposes, another consideration in the configuration of a projection is its compatibility with data sets to be used on the map. Data sets are geographic information, their collection depends on the datum of the Earth. Different datums assign slightly different coordinates to the location, so in large scale maps, such as those from national mapping systems

13.
SL2(R)
–
In mathematics, the special linear group SL or SL2 is the group of 2 ×2 real matrices with determinant one, SL =. It is a simple real Lie group with applications in geometry, topology, representation theory, SL acts on the complex upper half-plane by fractional linear transformations. The group action factors through the quotient PSL, more specifically, PSL = SL/, where I denotes the 2 ×2 identity matrix. It contains the modular group PSL, also closely related is the 2-fold covering group, Mp, a metaplectic group. Another related group is SL± the group of real 2 ×2 matrices with determinant ±1, SL is the group of all linear transformations of R2 that preserve oriented area. It is isomorphic to the symplectic group Sp and the special unitary group SU. It is also isomorphic to the group of unit-length coquaternions, the group SL± preserves unoriented area, it may reverse orientation. The quotient PSL has several interesting descriptions, It is the group of orientation-preserving projective transformations of the projective line R ∪. It is the group of automorphisms of the unit disc. It is the group of orientation-preserving isometries of the hyperbolic plane and it is the restricted Lorentz group of three-dimensional Minkowski space. Equivalently, it is isomorphic to the orthogonal group SO+. It follows that SL is isomorphic to the spin group Spin+, elements of the modular group PSL have additional interpretations, as do elements of the group SL, and these interpretations can also be viewed in light of the general theory of SL. Elements of PSL act on the projective line R ∪ as linear fractional transformations. This is analogous to the action of PSL on the Riemann sphere by Möbius transformations and it is the restriction of the action of PSL on the hyperbolic plane to the boundary at infinity. Elements of PSL act on the plane by Möbius transformations. This is precisely the set of Möbius transformations that preserve the upper half-plane and it follows that PSL is the group of conformal automorphisms of the upper half-plane. By the Riemann mapping theorem, it is also the group of automorphisms of the unit disc. The above formula can be used to define Möbius transformations of dual

14.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker