1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Set (mathematics)
–
In mathematics, a set is a well-defined collection of distinct objects, considered as an object in its own right. For example, the numbers 2,4, and 6 are distinct objects when considered separately, Sets are one of the most fundamental concepts in mathematics. Developed at the end of the 19th century, set theory is now a part of mathematics. In mathematics education, elementary topics such as Venn diagrams are taught at a young age, the German word Menge, rendered as set in English, was coined by Bernard Bolzano in his work The Paradoxes of the Infinite. A set is a collection of distinct objects. The objects that make up a set can be anything, numbers, people, letters of the alphabet, other sets, Sets are conventionally denoted with capital letters. Sets A and B are equal if and only if they have precisely the same elements. Cantors definition turned out to be inadequate, instead, the notion of a set is taken as a notion in axiomatic set theory. There are two ways of describing, or specifying the members of, a set, one way is by intensional definition, using a rule or semantic description, A is the set whose members are the first four positive integers. B is the set of colors of the French flag, the second way is by extension – that is, listing each member of the set. An extensional definition is denoted by enclosing the list of members in curly brackets, one often has the choice of specifying a set either intensionally or extensionally. In the examples above, for instance, A = C and B = D, there are two important points to note about sets. First, in a definition, a set member can be listed two or more times, for example. However, per extensionality, two definitions of sets which differ only in one of the definitions lists set members multiple times, define, in fact. Hence, the set is identical to the set. The second important point is that the order in which the elements of a set are listed is irrelevant and we can illustrate these two important points with an example, = =. For sets with many elements, the enumeration of members can be abbreviated, for instance, the set of the first thousand positive integers may be specified extensionally as, where the ellipsis indicates that the list continues in the obvious way. Ellipses may also be used where sets have infinitely many members, thus the set of positive even numbers can be written as

3.
Metric (mathematics)
–
In mathematics, a metric or distance function is a function that defines a distance between each pair of elements of a set. A set with a metric is called a metric space, a metric induces a topology on a set, but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable, an important source of metrics in differential geometry are metric tensors, bilinear forms that may be defined from the tangent vectors of a differentiable manifold onto a scalar. A metric tensor allows distances along curves to be determined through integration, however, not every metric comes from a metric tensor in this way. The first condition is implied by the others, for sets on which an addition +, X × X → X is defined, d is called a translation invariant metric if d = d for all x, y and a in X. These conditions express intuitive notions about the concept of distance, for example, that the distance between distinct points is positive and the distance from x to y is the same as the distance from y to x. The triangle inequality means that the distance x to z via y is at least as great as from x to z directly. Euclid in his work stated that the shortest distance between two points is a line, that was the triangle inequality for his geometry, if a modification of the triangle inequality 4*. D ≤ d + d is used in the definition then property 1 follows straight from property 4*, properties 2 and 4* give property 3 which in turn gives property 4. The discrete metric, if x = y then d =0, the Euclidean metric is translation and rotation invariant. The taxicab metric is translation invariant, more generally, any metric induced by a norm is translation invariant. If n ∈ N is a sequence of seminorms defining a vector space E. Graph metric, a defined in terms of distances in a certain graph. The Hamming distance in coding theory, Riemannian metric, a type of metric function that is appropriate to impose on any differentiable manifold. For any such manifold, one chooses at each point p a symmetric, positive definite, bilinear form L, Tp × Tp → ℝ on the tangent space Tp at p, a smooth manifold equipped with a Riemannian metric is called a Riemannian manifold. The Fubini–Study metric on complex projective space and this is an example of a Riemannian metric. String metrics, such as Levenshtein distance and other string edit distances, graph edit distance defines a distance function between graphs. For a given set X, two metrics d1 and d2 are called equivalent if the identity mapping id, → is a homeomorphism

4.
Conic section
–
In mathematics, a conic section is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse, the circle is a special case of the ellipse, and is of sufficient interest in its own right that it was sometimes called a fourth type of conic section. The conic sections have been studied by the ancient Greek mathematicians with this work culminating around 200 BC, the conic sections of the Euclidean plane have various distinguishing properties. Many of these have used as the basis for a definition of the conic sections. The type of conic is determined by the value of the eccentricity, in analytic geometry, a conic may be defined as a plane algebraic curve of degree 2, that is, as the set of points whose coordinates satisfy a quadratic equation in two variables. This equation may be written in form, and some geometric properties can be studied as algebraic conditions. In the Euclidean plane, the conic sections appear to be different from one another. By extending the geometry to a projective plane this apparent difference vanishes, further extension, by expanding the real coordinates to admit complex coordinates, provides the means to see this unification algebraically. The conic sections have been studied for thousands of years and have provided a source of interesting. A conic is the curve obtained as the intersection of a plane, called the cutting plane and we shall assume that the cone is a right circular cone for the purpose of easy description, but this is not required, any double cone with some circular cross-section will suffice. Planes that pass through the vertex of the cone will intersect the cone in a point and these are called degenerate conics and some authors do not consider them to be conics at all. Unless otherwise stated, we assume that conic refers to a non-degenerate conic. There are three types of conics, the ellipse, parabola, and hyperbola, the circle is a special kind of ellipse, although historically it had been considered as a fourth type. The circle and the ellipse arise when the intersection of the cone and plane is a closed curve, if the cutting plane is parallel to exactly one generating line of the cone, then the conic is unbounded and is called a parabola. In the remaining case, the figure is a hyperbola, in this case, the plane will intersect both halves of the cone, producing two separate unbounded curves. A property that the conic sections share is often presented as the following definition, a conic section is the locus of all points P whose distance to a fixed point F is a constant multiple of the distance from P to a fixed line L. For 0 < e <1 we obtain an ellipse, for e =1 a parabola, a circle is a limiting case and is not defined by a focus and directrix, in the plane. The eccentricity of a circle is defined to be zero and its focus is the center of the circle, an ellipse and a hyperbola each have two foci and distinct directrices for each of them

5.
Metric space
–
In mathematics, a metric space is a set for which distances between all members of the set are defined. Those distances, taken together, are called a metric on the set, a metric on a space induces topological properties like open and closed sets, which lead to the study of more abstract topological spaces. The most familiar metric space is 3-dimensional Euclidean space, in fact, a metric is the generalization of the Euclidean metric arising from the four long-known properties of the Euclidean distance. The Euclidean metric defines the distance between two points as the length of the line segment connecting them. Maurice Fréchet introduced metric spaces in his work Sur quelques points du calcul fonctionnel, since for any x, y ∈ M, The function d is also called distance function or simply distance. Often, d is omitted and one just writes M for a space if it is clear from the context what metric is used. Ignoring mathematical details, for any system of roads and terrains the distance between two locations can be defined as the length of the shortest route connecting those locations, to be a metric there shouldnt be any one-way roads. The triangle inequality expresses the fact that detours arent shortcuts, many of the examples below can be seen as concrete versions of this general idea. The real numbers with the function d = | y − x | given by the absolute difference. The rational numbers with the distance function also form a metric space. The positive real numbers with distance function d = | log | is a metric space. Any normed vector space is a space by defining d = ∥ y − x ∥. Examples, The Manhattan norm gives rise to the Manhattan distance, the maximum norm gives rise to the Chebyshev distance or chessboard distance, the minimal number of moves a chess king would take to travel from x to y. The British Rail metric on a vector space is given by d = ∥ x ∥ + ∥ y ∥ for distinct points x and y. The name alludes to the tendency of railway journeys to proceed via London irrespective of their final destination, If is a metric space and X is a subset of M, then becomes a metric space by restricting the domain of d to X × X. The discrete metric, where d =0 if x = y and d =1 otherwise, is a simple but important example and this, in particular, shows that for any set, there is always a metric space associated to it. Using this metric, any point is a ball, and therefore every subset is open. A finite metric space is a metric space having a number of points

6.
Empty set
–
In mathematics, and more specifically set theory, the empty set is the unique set having no elements, its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, in other theories, many possible properties of sets are vacuously true for the empty set. Null set was once a synonym for empty set, but is now a technical term in measure theory. The empty set may also be called the void set, common notations for the empty set include, ∅, and ∅. The latter two symbols were introduced by the Bourbaki group in 1939, inspired by the letter Ø in the Norwegian, although now considered an improper use of notation, in the past,0 was occasionally used as a symbol for the empty set. The empty-set symbol ∅ is found at Unicode point U+2205, in LaTeX, it is coded as \emptyset for ∅ or \varnothing for ∅. In standard axiomatic set theory, by the principle of extensionality, hence there is but one empty set, and we speak of the empty set rather than an empty set. The mathematical symbols employed below are explained here, in this context, zero is modelled by the empty set. For any property, For every element of ∅ the property holds, There is no element of ∅ for which the property holds. Conversely, if for some property and some set V, the two statements hold, For every element of V the property holds, There is no element of V for which the property holds. By the definition of subset, the empty set is a subset of any set A. That is, every element x of ∅ belongs to A. Indeed, since there are no elements of ∅ at all, there is no element of ∅ that is not in A. Any statement that begins for every element of ∅ is not making any substantive claim and this is often paraphrased as everything is true of the elements of the empty set. When speaking of the sum of the elements of a finite set, the reason for this is that zero is the identity element for addition. Similarly, the product of the elements of the empty set should be considered to be one, a disarrangement of a set is a permutation of the set that leaves no element in the same position. The empty set is a disarrangment of itself as no element can be found that retains its original position. Since the empty set has no members, when it is considered as a subset of any ordered set, then member of that set will be an upper bound. For example, when considered as a subset of the numbers, with its usual ordering, represented by the real number line

7.
Infimum and supremum
–
In mathematics, the infimum of a subset S of a partially ordered set T is the greatest element in T that is less than or equal to all elements of S, if such an element exists. Consequently, the term greatest lower bound is also commonly used, the supremum of a subset S of a partially ordered set T is the least element in T that is greater than or equal to all elements of S, if such an element exists. Consequently, the supremum is also referred to as the least upper bound, the infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are special cases that are important in analysis. However, the general definitions remain valid in the abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are similar to minimum and maximum, for instance, the positive real numbers ℝ+* does not have a minimum, because any given element of ℝ+* could simply be divided in half resulting in a smaller number that is still in ℝ+*. There is, however, exactly one infimum of the real numbers,0. A lower bound of a subset S of an ordered set is an element a of P such that a ≤ x for all x in S. A lower bound a of S is called an infimum of S if for all lower bounds y of S in P, y ≤ a. Similarly, a bound of a subset S of a partially ordered set is an element b of P such that b ≥ x for all x in S. An upper bound b of S is called a supremum of S if for all upper bounds z of S in P, z ≥ b, infima and suprema do not necessarily exist. Existence of an infimum of a subset S of P can fail if S has no lower bound at all, however, if an infimum or supremum does exist, it is unique. Consequently, partially ordered sets for which certain infima are known to exist become especially interesting, more information on the various classes of partially ordered sets that arise from such considerations are found in the article on completeness properties. If the supremum of a subset S exists, it is unique, if S contains a greatest element, then that element is the supremum, otherwise, the supremum does not belong to S. Likewise, if the infimum exists, it is unique. If S contains a least element, then that element is the infimum, otherwise, the infimum of a subset S of a partially ordered set P, assuming it exists, does not necessarily belong to S. If it does, it is a minimal or least element of S. Similarly, if the supremum of S belongs to S, for example, consider the set of negative real numbers. This set has no greatest element, since for every element of the set, there is another, larger, for instance, for any negative real number x, there is another negative real number x 2, which is greater. On the other hand, every real number greater than or equal to zero is certainly an upper bound on this set, hence,0 is the least upper bound of the negative reals, so the supremum is 0