Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Minute and second of arc
A minute of arc, arc minute, or minute arc is a unit of angular measurement equal to 1/60 of one degree. Since one degree is 1/360 of a turn, one minute of arc is 1/21600 of a turn – it is for this reason that the Earth's circumference is exactly 21,600 nautical miles. A minute of arc is π/10800 of a radian. A second of arc, arcsecond, or arc second is 1/60 of an arcminute, 1/3600 of a degree, 1/1296000 of a turn, π/648000 of a radian; these units originated in Babylonian astronomy as sexagesimal subdivisions of the degree. To express smaller angles, standard SI prefixes can be employed; the number of square arcminutes in a complete sphere is 4 π 2 = 466 560 000 π ≈ 148510660 square arcminutes. The names "minute" and "second" have nothing to do with the identically named units of time "minute" or "second"; the identical names reflect the ancient Babylonian number system, based on the number 60. The standard symbol for marking the arcminute is the prime, though a single quote is used where only ASCII characters are permitted.
One arcminute is thus written 1′. It is abbreviated as arcmin or amin or, less the prime with a circumflex over it; the standard symbol for the arcsecond is the double prime, though a double quote is used where only ASCII characters are permitted. One arcsecond is thus written 1″, it is abbreviated as arcsec or asec. In celestial navigation, seconds of arc are used in calculations, the preference being for degrees and decimals of a minute, for example, written as 42° 25.32′ or 42° 25.322′. This notation has been carried over into marine GPS receivers, which display latitude and longitude in the latter format by default; the full moon's average apparent size is about 31 arcminutes. An arcminute is the resolution of the human eye. An arcsecond is the angle subtended by a U. S. dime coin at a distance of 4 kilometres. An arcsecond is the angle subtended by an object of diameter 725.27 km at a distance of one astronomical unit, an object of diameter 45866916 km at one light-year, an object of diameter one astronomical unit at a distance of one parsec, by definition.
A milliarcsecond is about the size of a dime atop the Eiffel Tower. A microarcsecond is about the size of a period at the end of a sentence in the Apollo mission manuals left on the Moon as seen from Earth. A nanoarcsecond is about the size of a penny on Neptune's moon Triton as observed from Earth. Notable examples of size in arcseconds are: Hubble Space Telescope has calculational resolution of 0.05 arcseconds and actual resolution of 0.1 arcseconds, close to the diffraction limit. Crescent Venus measures between 66 seconds of arc. Since antiquity the arcminute and arcsecond have been used in astronomy. In the ecliptic coordinate system and longitude; the principal exception is right ascension in equatorial coordinates, measured in time units of hours and seconds. The arcsecond is often used to describe small astronomical angles such as the angular diameters of planets, the proper motion of stars, the separation of components of binary star systems, parallax, the small change of position of a star in the course of a year or of a solar system body as the Earth rotates.
These small angles may be written in milliarcseconds, or thousandths of an arcsecond. The unit of distance, the parsec, named from the parallax of one arc second, was developed for such parallax measurements, it is the distance at which the mean radius of the Earth's orbit would subtend an angle of one arcsecond. The ESA astrometric space probe Gaia, launched in 2013, can approximate star positions to 7 microarcseconds. Apart from the Sun, the star with the largest angular diameter from Earth is R Doradus, a red giant with a diameter of 0.05 arcsecond. Because of the effects of atmospheric seeing, ground-based telescopes will smear the image of a star to an angular diameter of about 0.5 arcsecond. The dwarf planet Pluto has proven difficult to resolve because its angular diameter is about 0.1 arcsecond. Space telescopes are diffraction limited. For example, the Hubble Space Telescope can reach an angular size of stars down to about 0.1″. Techniques exist for improving seeing on the ground. Adaptive optics, for example, can produce images around 0.05 arcsecond on a 10 m class telescope.
Minutes and seconds of arc are used in cartography and navigation. At sea level one minute of arc
Radial velocity
The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is taken to be the observer on Earth, so the radial velocity denotes the speed with which the object moves away from or approaches the Earth. In astronomy, radial velocity is measured to the first order of approximation by Doppler spectroscopy; the quantity obtained by this method may be called the barycentric radial-velocity measure or spectroscopic radial velocity. However, due to relativistic and cosmological effects over the great distances that light travels to reach the observer from an astronomical object, this measure cannot be transformed to a geometric radial velocity without additional assumptions about the object and the space between it and the observer. By contrast, astrometric radial velocity is determined by astrometric observations.
Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding and increases for objects that were approaching. The radial velocity of a star or other luminous distant objects can be measured by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects was increasing. In many binary stars, the orbital motion causes radial velocity variations of several kilometers per second; as the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, some orbital elements, such as eccentricity and semimajor axis; the same method has been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass using the binary mass function.
Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit; the radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By looking at the spectrum of a star—and so, measuring its velocity—it can be determined if it moves periodically due to the influence of an exoplanet companion. From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of the Earth's elliptic motion around the sun at ± 30 km/s, a monthly rotation of ± 13 m/s of the Earth around the center of gravity of the Earth-Moon system, the daily rotation of the telescope with the Earth crust around the Earth axis, up to ±460 m/s at the equator and proportional to the cosine of the telescope's geographic latitude, small contributions from the Earth polar motion at the level of mm/s, contributions of 230 km/s from the motion around the Galactic center and associated proper motions.
In the case of spectroscopic measurements corrections of the order of ±20 cm/s with respect to aberration. Proper motion Peculiar velocity Relative velocity Space velocity The Radial Velocity Equation in the Search for Exoplanets
Proper motion
Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars. The components for proper motion in the equatorial coordinate system are given in the direction of right ascension and of declination, their combined value is computed as the total proper motion. It has dimensions of angle per time arcseconds per year or milliarcseconds per year. Knowledge of the proper motion and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, by coordinate transformation, the motion in respect to the Milky Way. Proper motion is not "proper", because it includes a component due to the motion of the Solar System itself. Over the course of centuries, stars appear to maintain nearly fixed positions with respect to each other, so that they form the same constellations over historical time.
Ursa Major or Crux, for example, looks nearly the same now. However, precise long-term observations show that the constellations change shape, albeit slowly, that each star has an independent motion; this motion is caused by the movement of the stars relative to the Solar System. The Sun travels in a nearly circular orbit about the center of the Milky Way at a speed of about 220 km/s at a radius of 8 kPc from the center, which can be taken as the rate of rotation of the Milky Way itself at this radius; the proper motion is a two-dimensional vector and is thus defined by two quantities: its position angle and its magnitude. The first quantity indicates the direction of the proper motion on the celestial sphere, the second quantity is the motion's magnitude expressed in arcseconds per year or milliarcsecond per year. Proper motion may alternatively be defined by the angular changes per year in the star's right ascension and declination, using a constant epoch in defining these; the components of proper motion by convention are arrived at.
Suppose an object moves from coordinates to coordinates in a time Δt. The proper motions are given by: μ α = α 2 − α 1 Δ t, μ δ = δ 2 − δ 1 Δ t; the magnitude of the proper motion μ is given by the Pythagorean theorem: μ 2 = μ δ 2 + μ α 2 ⋅ cos 2 δ, μ 2 = μ δ 2 + μ α ∗ 2, where δ is the declination. The factor in cos2δ accounts for the fact that the radius from the axis of the sphere to its surface varies as cosδ, for example, zero at the pole. Thus, the component of velocity parallel to the equator corresponding to a given angular change in α is smaller the further north the object's location; the change μα, which must be multiplied by cosδ to become a component of the proper motion, is sometimes called the "proper motion in right ascension", μδ the "proper motion in declination". If the proper motion in right ascension has been converted by cosδ, the result is designated μα*. For example, the proper motion results in right ascension in the Hipparcos Catalogue have been converted. Hence, the individual proper motions in right ascension and declination are made equivalent for straightforward calculations of various other stellar motions.
The position angle θ is related to these components by: μ sin θ = μ α cos δ = μ α ∗, μ cos θ = μ δ. Motions in equatorial coordinates can be converted to motions in galactic coordinates. For the majority of stars seen in the sky, the observed proper motions are small and unremarkable; such stars are either faint or are distant, have changes of below 10 milliarcseconds per year, do not appear to move appreciably over many millennia. A few do have significant motions, are called high-proper motion stars. Motions can be in seemingly random directions. Two or more stars, double stars or open star clusters, which are moving in similar directions, exhibit so-called shared or common proper motion, suggesting they may be gravitationally attached or share similar motion in space. Barnard's Star has the largest proper motion of all stars, moving at 10.3 seconds of arc per year. L
Stellar rotation
Stellar rotation is the angular motion of a star about its axis. The rate of rotation can be measured from the spectrum of the star, or by timing the movements of active features on the surface; the rotation of a star produces an equatorial bulge due to centrifugal force. As stars are not solid bodies, they can undergo differential rotation, thus the equator of the star can rotate at a different angular velocity than the higher latitudes. These differences in the rate of rotation within a star may have a significant role in the generation of a stellar magnetic field; the magnetic field of a star interacts with the stellar wind. As the wind moves away from the star its rate of angular velocity slows; the magnetic field of the star interacts with the wind, which applies a drag to the stellar rotation. As a result, angular momentum is transferred from the star to the wind, over time this slows the star's rate of rotation. Unless a star is being observed from the direction of its pole, sections of the surface have some amount of movement toward or away from the observer.
The component of movement, in the direction of the observer is called the radial velocity. For the portion of the surface with a radial velocity component toward the observer, the radiation is shifted to a higher frequency because of Doppler shift; the region that has a component moving away from the observer is shifted to a lower frequency. When the absorption lines of a star are observed, this shift at each end of the spectrum causes the line to broaden. However, this broadening must be separated from other effects that can increase the line width; the component of the radial velocity observed through line broadening depends on the inclination of the star's pole to the line of sight. The derived value is given as v e ⋅ sin i, where ve is the rotational velocity at the equator and i is the inclination. However, i is not always known, so the result gives a minimum value for the star's rotational velocity; that is, if i is not a right angle the actual velocity is greater than v e ⋅ sin i. This is sometimes referred to as the projected rotational velocity.
In fast rotating stars polarimetry offers a method of recovering the actual velocity rather than just the rotational velocity. For giant stars, the atmospheric microturbulence can result in line broadening, much larger than effects of rotational drowning out the signal. However, an alternate approach can be employed; these occur when a massive object passes in front of the more distant star and functions like a lens magnifying the image. The more detailed information gathered by this means allows the effects of microturbulence to be distinguished from rotation. If a star displays magnetic surface activity such as starspots these features can be tracked to estimate the rotation rate. However, such features can form at locations other than equator and can migrate across latitudes over the course of their life span, so differential rotation of a star can produce varying measurements. Stellar magnetic activity is associated with rapid rotation, so this technique can be used for measurement of such stars.
Observation of starspots has shown that these features can vary the rotation rate of a star, as the magnetic fields modify the flow of gases in the star. Gravity tends to contract celestial bodies into a perfect sphere, the shape where all the mass is as close to the center of gravity as possible, but a rotating star is not spherical in shape, it has an equatorial bulge. As a rotating proto-stellar disk contracts to form a star its shape becomes more and more spherical, but the contraction doesn't proceed all the way to a perfect sphere. At the poles all of the gravity acts to increase the contraction, but at the equator the effective gravity is diminished by the centrifugal force; the final shape of the star after star formation is an equilibrium shape, in the sense that the effective gravity in the equatorial region cannot pull the star to a more spherical shape. The rotation gives rise to gravity darkening at the equator, as described by the von Zeipel theorem. An extreme example of an equatorial bulge is found on the star Regulus A.
The equator of this star has a measured rotational velocity of 317 ± 3 km/s. This corresponds to a rotation period of 15.9 hours, 86% of the velocity at which the star would break apart. The equatorial radius of this star is 32% larger than polar radius. Other rotating stars include Alpha Arae, Pleione and Achernar; the break-up velocity of a star is an expression, used to describe the case where the centrifugal force at the equator is equal to the gravitational force. For a star to be stable the rotational velocity must be below this value. Surface differential rotation is observed on stars such as the Sun when the angular velocity varies with latitude; the angular velocity decreases with increasing latitude. However the reverse has been observed, such as on the star designated HD 31993; the first such star, other than the Sun, to have its differential rotation mapped in detail is AB Doradus. The underlying mechanism that causes differential rotation is turbulent convection inside a star. Convective motion carries energy toward the surface through the mass movement of plasma.
This mass of plasma carries a portion of the angular velocity of the star. When turbulence occurs through shear and rotation, the angular momentum can become redistributed to different latitudes thro
Kelvin
The Kelvin scale is an absolute thermodynamic temperature scale using as its null point absolute zero, the temperature at which all thermal motion ceases in the classical description of thermodynamics. The kelvin is the base unit of temperature in the International System of Units; until 2018, the kelvin was defined as the fraction 1/273.16 of the thermodynamic temperature of the triple point of water. In other words, it was defined such that the triple point of water is 273.16 K. On 16 November 2018, a new definition was adopted, in terms of a fixed value of the Boltzmann constant. For legal metrology purposes, the new definition will come into force on 20 May 2019; the Kelvin scale is named after the Belfast-born, Glasgow University engineer and physicist William Thomson, 1st Baron Kelvin, who wrote of the need for an "absolute thermometric scale". Unlike the degree Fahrenheit and degree Celsius, the kelvin is not referred to or written as a degree; the kelvin is the primary unit of temperature measurement in the physical sciences, but is used in conjunction with the degree Celsius, which has the same magnitude.
The definition implies that absolute zero is equivalent to −273.15 °C. In 1848, William Thomson, made Lord Kelvin, wrote in his paper, On an Absolute Thermometric Scale, of the need for a scale whereby "infinite cold" was the scale's null point, which used the degree Celsius for its unit increment. Kelvin calculated; this absolute scale is known today as the Kelvin thermodynamic temperature scale. Kelvin's value of "−273" was the negative reciprocal of 0.00366—the accepted expansion coefficient of gas per degree Celsius relative to the ice point, giving a remarkable consistency to the accepted value. In 1954, Resolution 3 of the 10th General Conference on Weights and Measures gave the Kelvin scale its modern definition by designating the triple point of water as its second defining point and assigned its temperature to 273.16 kelvins. In 1967/1968, Resolution 3 of the 13th CGPM renamed the unit increment of thermodynamic temperature "kelvin", symbol K, replacing "degree Kelvin", symbol °K. Furthermore, feeling it useful to more explicitly define the magnitude of the unit increment, the 13th CGPM held in Resolution 4 that "The kelvin, unit of thermodynamic temperature, is equal to the fraction 1/273.16 of the thermodynamic temperature of the triple point of water."In 2005, the Comité International des Poids et Mesures, a committee of the CGPM, affirmed that for the purposes of delineating the temperature of the triple point of water, the definition of the Kelvin thermodynamic temperature scale would refer to water having an isotopic composition specified as Vienna Standard Mean Ocean Water.
In 2018, Resolution A of the 26th CGPM adopted a significant redefinition of SI base units which included redefining the Kelvin in terms of a fixed value for the Boltzmann constant of 1.380649×10−23 J/K. When spelled out or spoken, the unit is pluralised using the same grammatical rules as for other SI units such as the volt or ohm; when reference is made to the "Kelvin scale", the word "kelvin"—which is a noun—functions adjectivally to modify the noun "scale" and is capitalized. As with most other SI unit symbols there is a space between the kelvin symbol. Before the 13th CGPM in 1967–1968, the unit kelvin was called a "degree", the same as with the other temperature scales at the time, it was distinguished from the other scales with either the adjective suffix "Kelvin" or with "absolute" and its symbol was °K. The latter term, the unit's official name from 1948 until 1954, was ambiguous since it could be interpreted as referring to the Rankine scale. Before the 13th CGPM, the plural form was "degrees absolute".
The 13th CGPM changed the unit name to "kelvin". The omission of "degree" indicates that it is not relative to an arbitrary reference point like the Celsius and Fahrenheit scales, but rather an absolute unit of measure which can be manipulated algebraically. In science and engineering, degrees Celsius and kelvins are used in the same article, where absolute temperatures are given in degrees Celsius, but temperature intervals are given in kelvins. E.g. "its measured value was 0.01028 °C with an uncertainty of 60 µK." This practice is permissible because the degree Celsius is a special name for the kelvin for use in expressing relative temperatures, the magnitude of the degree Celsius is equal to that of the kelvin. Notwithstanding that the official endorsement provided by Resolution 3 of the 13th CGPM states "a temperature interval may be expressed in degrees Celsius", the practice of using both °C and K is widespread throughout the scientific world; the use of SI prefixed forms of the degree Celsius to express a temperature interval has not been adopted.
In 2005 the CIPM embarked on a programme to redefine the kelvin using a more experimentally rigorous methodology. In particular, the committee proposed redefining the kelvin such that Boltzmann's constant takes the exact value 1.3806505×10−23 J/K. The committee had hoped tha
Metallicity
In astronomy, metallicity is used to describe the abundance of elements present in an object that are heavier than hydrogen or helium. Most of the physical matter in the Universe is in the form of hydrogen and helium, so astronomers use the word "metals" as a convenient short term for "all elements except hydrogen and helium"; this usage is distinct from the usual physical definition of a solid metal. For example and nebulae with high abundances of carbon, nitrogen and neon are called "metal-rich" in astrophysical terms though those elements are non-metals in chemistry; the presence of heavier elements hails from stellar nucleosynthesis, the theory that the majority of elements heavier than hydrogen and helium in the Universe are formed in the cores of stars as they evolve. Over time, stellar winds and supernovae deposit the metals into the surrounding environment, enriching the interstellar medium and providing recycling materials for the birth of new stars, it follows that older generations of stars, which formed in the metal-poor early Universe have lower metallicities than those of younger generations, which formed in a more metal-rich Universe.
Observed changes in the chemical abundances of different types of stars, based on the spectral peculiarities that were attributed to metallicity, led astronomer Walter Baade in 1944 to propose the existence of two different populations of stars. These became known as Population I and Population II stars. A third stellar population was introduced in 1978, known as Population III stars; these metal-poor stars were theorised to have been the "first-born" stars created in the Universe. Astronomers use several different methods to describe and approximate metal abundances, depending on the available tools and the object of interest; some methods include determining the fraction of mass, attributed to gas versus metals, or measuring the ratios of the number of atoms of two different elements as compared to the ratios found in the Sun. Stellar composition is simply defined by the parameters X, Y and Z. Here X is the mass fraction of hydrogen, Y is the mass fraction of helium, Z is the mass fraction of all the remaining chemical elements.
Thus X + Y + Z = 1.00. In most stars, nebulae, H II regions, other astronomical sources and helium are the two dominant elements; the hydrogen mass fraction is expressed as X ≡ m H / M, where M is the total mass of the system, m H is the fractional mass of the hydrogen it contains. The helium mass fraction is denoted as Y ≡ m He / M; the remainder of the elements are collectively referred to as "metals", the metallicity—the mass fraction of elements heavier than helium—can be calculated as Z = ∑ i > He m i M = 1 − X − Y. For the surface of the Sun, these parameters are measured to have the following values: Due to the effects of stellar evolution, neither the initial composition nor the present day bulk composition of the Sun is the same as its present-day surface composition; the overall stellar metallicity is defined using the total iron content of the star, as iron is among the easiest to measure with spectral observations in the visible spectrum. The abundance ratio is defined as the logarithm of the ratio of a star's iron abundance compared to that of the Sun and is expressed thus: = log 10 star − log 10 sun, where N Fe and N H are the number of iron and hydrogen atoms per unit of volume respectively.
The unit used for metallicity is the dex, contraction of "decimal exponent". By this formulation, stars with a higher metallicity than the Sun have a positive logarithmic value, whereas those with a lower metallicity than the Sun have a negative value. For example, stars with a value of +1 have 10 times the metallicity of the Sun. Young Population I stars have higher iron-to-hydrogen ratios than older Population II stars. Primordial Population III stars are estimated to have a metallicity of less than −6.0, that is, less than a millionth of the abundance of iron in the Sun. The same notation is used to express variations in abundances between other the individual elements as compared to solar proportions. For example, the notati