1.
Decimal prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used

2.
Unit prefix
–
A unit prefix is a specifier or mnemonic that is prepended to units of measurement to indicate multiples or fractions of the units. Units of various sizes are formed by the use of such prefixes. The prefixes of the system, such as kilo and milli. In information technology it is common to use binary prefixes, which are based on powers of two, historically, many prefixes have been used or proposed by various sources, but only a narrow set has been recognised by standards organisations. The prefixes of the metric system precede a basic unit of measure to indicate a decadic multiple, each prefix has a unique symbol that is prepended to the unit symbol. Some of the date back to the introduction of the metric system in the 1790s, but new prefixes have been added. The International Bureau of Weights and Measures has standardised twenty metric prefixes in resolutions dating from 1960 to 1991 for use with the International System of Units, although formerly in use, the SI disallows combining prefixes, the microkilogram or centimillimetre, for example, are not permitted. Prefixes corresponding to powers of one thousand are usually preferred, however, units such as the hectopascal, hectare, decibel, centimetre, in general, prefixes are used with any metric unit, but may also be used with non-metric units. Some combinations, however, are more common than others, the choice of prefixes for a given unit has often arisen by convenience of use and historical developments. Unit prefixes that are larger or smaller than encountered in practice are seldom used. In most contexts only a few, the most common, combinations are established, for example, prefixes for multiples greater than one thousand are rarely applied to the gram or metre. Some prefixes used in versions of the metric system are no longer used. The prefix myrio- was a spelling variant for myria-, as proposed by Thomas Young. A binary prefix indicates multiplication by a power of two, the tenth power of 2 has the value 1024, which is close to 1000. This has prompted the use of the prefixes kilo, mega, and giga to also denote the powers of 1024 which is common in information technology with the unit of digital information. Units of information are not covered in the International System of Units, for example, in citations of main memory or RAM capacity, kilobyte, megabyte and gigabyte customarily mean 1024,1048576 and 1073741824 bytes respectively. In the specifications of hard drive capacities and network transmission bit rates, on the other hand, decimal prefixes. For example, a 500-gigabyte hard drive holds 500 billion bytes, the ambiguity has led to some confusion and even of lawsuits from purchasers who were expecting 220 or 230 and considered themselves shortchanged by the seller

3.
Metric system
–
The metric system is an internationally agreed decimal system of measurement. Many sources also cite Liberia and Myanmar as the other countries not to have done so. Although the originators intended to devise a system that was accessible to all. Control of the units of measure was maintained by the French government until 1875, when it was passed to an intergovernmental organisation. From its beginning, the features of the metric system were the standard set of interrelated base units. These base units are used to larger and smaller units that could replace a huge number of other units of measure in existence. Although the system was first developed for use, the development of coherent units of measure made it particularly suitable for science. Although the metric system has changed and developed since its inception, designed for transnational use, it consisted of a basic set of units of measurement, now known as base units. At the outbreak of the French Revolution in 1789, most countries, the metric system was designed to be universal—in the words of the French philosopher Marquis de Condorcet it was to be for all people for all time. However, these overtures failed and the custody of the metric system remained in the hands of the French government until 1875. In languages where the distinction is made, unit names are common nouns, the concept of using consistent classical names for the prefixes was first proposed in a report by the Commission on Weights and Measures in May 1793. The prefix kilo, for example, is used to multiply the unit by 1000, thus the kilogram and kilometre are a thousand grams and metres respectively, and a milligram and millimetre are one thousandth of a gram and metre respectively. These relations can be written symbolically as,1 mg =0, however,1935 extensions to the prefix system did not follow this convention, the prefixes nano- and micro-, for example have Greek roots. During the 19th century the prefix myria-, derived from the Greek word μύριοι, was used as a multiplier for 10000, prefixes are not usually used to indicate multiples of a second greater than 1, the non-SI units of minute, hour and day are used instead. On the other hand, prefixes are used for multiples of the unit of volume. The base units used in the system must be realisable. Each of the units in SI is accompanied by a mise en pratique published by the BIPM that describes in detail at least one way in which the base unit can be measured. In practice, such realisation is done under the auspices of a mutual acceptance arrangement, in the original version of the metric system the base units could be derived from a specified length and the weight of a specified volume of pure water

4.
Metric prefix
–
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or fraction of the unit. While all metric prefixes in use today are decadic, historically there have been a number of binary metric prefixes as well. Each prefix has a symbol that is prepended to the unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand, the prefix milli-, likewise, may be added to metre to indicate division by one thousand, one millimetre is equal to one thousandth of a metre. Decimal multiplicative prefixes have been a feature of all forms of the system with six dating back to the systems introduction in the 1790s. Metric prefixes have even been prepended to non-metric units, the SI prefixes are standardized for use in the International System of Units by the International Bureau of Weights and Measures in resolutions dating from 1960 to 1991. Since 2009, they have formed part of the International System of Quantities, the BIPM specifies twenty prefixes for the International System of Units. Each prefix name has a symbol which is used in combination with the symbols for units of measure. For example, the symbol for kilo- is k, and is used to produce km, kg, and kW, which are the SI symbols for kilometre, kilogram, prefixes corresponding to an integer power of one thousand are generally preferred. Hence 100 m is preferred over 1 hm or 10 dam, the prefixes hecto, deca, deci, and centi are commonly used for everyday purposes, and the centimetre is especially common. However, some building codes require that the millimetre be used in preference to the centimetre, because use of centimetres leads to extensive usage of decimal points. Prefixes may not be used in combination and this also applies to mass, for which the SI base unit already contains a prefix. For example, milligram is used instead of microkilogram, in the arithmetic of measurements having units, the units are treated as multiplicative factors to values. If they have prefixes, all but one of the prefixes must be expanded to their numeric multiplier,1 km2 means one square kilometre, or the area of a square of 1000 m by 1000 m and not 1000 square metres. 2 Mm3 means two cubic megametres, or the volume of two cubes of 1000000 m by 1000000 m by 1000000 m or 2×1018 m3, and not 2000000 cubic metres, examples 5 cm = 5×10−2 m =5 ×0.01 m =0. The prefixes, including those introduced after 1960, are used with any metric unit, metric prefixes may also be used with non-metric units. The choice of prefixes with a unit is usually dictated by convenience of use. Unit prefixes for amounts that are larger or smaller than those actually encountered are seldom used

5.
International System of Units
–
The International System of Units is the modern form of the metric system, and is the most widely used system of measurement. It comprises a coherent system of units of measurement built on seven base units, the system also establishes a set of twenty prefixes to the unit names and unit symbols that may be used when specifying multiples and fractions of the units. The system was published in 1960 as the result of an initiative began in 1948. It is based on the system of units rather than any variant of the centimetre-gram-second system. The motivation for the development of the SI was the diversity of units that had sprung up within the CGS systems, the International System of Units has been adopted by most developed countries, however, the adoption has not been universal in all English-speaking countries. The metric system was first implemented during the French Revolution with just the metre and kilogram as standards of length, in the 1830s Carl Friedrich Gauss laid the foundations for a coherent system based on length, mass, and time. In the 1860s a group working under the auspices of the British Association for the Advancement of Science formulated the requirement for a coherent system of units with base units and derived units. Meanwhile, in 1875, the Treaty of the Metre passed responsibility for verification of the kilogram, in 1921, the Treaty was extended to include all physical quantities including electrical units originally defined in 1893. The units associated with these quantities were the metre, kilogram, second, ampere, kelvin, in 1971, a seventh base quantity, amount of substance represented by the mole, was added to the definition of SI. On 11 July 1792, the proposed the names metre, are, litre and grave for the units of length, area, capacity. The committee also proposed that multiples and submultiples of these units were to be denoted by decimal-based prefixes such as centi for a hundredth, on 10 December 1799, the law by which the metric system was to be definitively adopted in France was passed. Prior to this, the strength of the magnetic field had only been described in relative terms. The technique used by Gauss was to equate the torque induced on a magnet of known mass by the earth’s magnetic field with the torque induced on an equivalent system under gravity. The resultant calculations enabled him to assign dimensions based on mass, length, a French-inspired initiative for international cooperation in metrology led to the signing in 1875 of the Metre Convention. Initially the convention only covered standards for the metre and the kilogram, one of each was selected at random to become the International prototype metre and International prototype kilogram that replaced the mètre des Archives and kilogramme des Archives respectively. Each member state was entitled to one of each of the prototypes to serve as the national prototype for that country. Initially its prime purpose was a periodic recalibration of national prototype metres. The official language of the Metre Convention is French and the version of all official documents published by or on behalf of the CGPM is the French-language version

6.
Ancient Greek
–
Ancient Greek includes the forms of Greek used in ancient Greece and the ancient world from around the 9th century BC to the 6th century AD. It is often divided into the Archaic period, Classical period. It is antedated in the second millennium BC by Mycenaean Greek, the language of the Hellenistic phase is known as Koine. Koine is regarded as a historical stage of its own, although in its earliest form it closely resembled Attic Greek. Prior to the Koine period, Greek of the classic and earlier periods included several regional dialects, Ancient Greek was the language of Homer and of fifth-century Athenian historians, playwrights, and philosophers. It has contributed many words to English vocabulary and has been a subject of study in educational institutions of the Western world since the Renaissance. This article primarily contains information about the Epic and Classical phases of the language, Ancient Greek was a pluricentric language, divided into many dialects. The main dialect groups are Attic and Ionic, Aeolic, Arcadocypriot, some dialects are found in standardized literary forms used in literature, while others are attested only in inscriptions. There are also several historical forms, homeric Greek is a literary form of Archaic Greek used in the epic poems, the Iliad and Odyssey, and in later poems by other authors. Homeric Greek had significant differences in grammar and pronunciation from Classical Attic, the origins, early form and development of the Hellenic language family are not well understood because of a lack of contemporaneous evidence. Several theories exist about what Hellenic dialect groups may have existed between the divergence of early Greek-like speech from the common Proto-Indo-European language and the Classical period and they have the same general outline, but differ in some of the detail. The invasion would not be Dorian unless the invaders had some relationship to the historical Dorians. The invasion is known to have displaced population to the later Attic-Ionic regions, the Greeks of this period believed there were three major divisions of all Greek people—Dorians, Aeolians, and Ionians, each with their own defining and distinctive dialects. Often non-west is called East Greek, Arcadocypriot apparently descended more closely from the Mycenaean Greek of the Bronze Age. Boeotian had come under a strong Northwest Greek influence, and can in some respects be considered a transitional dialect, thessalian likewise had come under Northwest Greek influence, though to a lesser degree. Most of the dialect sub-groups listed above had further subdivisions, generally equivalent to a city-state and its surrounding territory, Doric notably had several intermediate divisions as well, into Island Doric, Southern Peloponnesus Doric, and Northern Peloponnesus Doric. The Lesbian dialect was Aeolic Greek and this dialect slowly replaced most of the older dialects, although Doric dialect has survived in the Tsakonian language, which is spoken in the region of modern Sparta. Doric has also passed down its aorist terminations into most verbs of Demotic Greek, by about the 6th century AD, the Koine had slowly metamorphosized into Medieval Greek

7.
Electronvolt
–
In physics, the electronvolt is a unit of energy equal to approximately 1. 6×10−19 joules. By definition, it is the amount of energy gained by the charge of an electron moving across an electric potential difference of one volt. Thus it is 1 volt multiplied by the elementary charge, therefore, one electronvolt is equal to 6981160217662079999♠1. 6021766208×10−19 J. The electronvolt is not a SI unit, and its definition is empirical, like the elementary charge on which it is based, it is not an independent quantity but is equal to 1 J/C √2hα / μ0c0. It is a unit of energy within physics, widely used in solid state, atomic, nuclear. It is commonly used with the metric prefixes milli-, kilo-, in some older documents, and in the name Bevatron, the symbol BeV is used, which stands for billion electronvolts, it is equivalent to the GeV. By mass–energy equivalence, the electronvolt is also a unit of mass and it is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c2, where c is the speed of light in vacuum. It is common to express mass in terms of eV as a unit of mass. The mass equivalent of 1 eV/c2 is 1 eV / c 2 = ⋅1 V2 =1.783 ×10 −36 kg. For example, an electron and a positron, each with a mass of 0.511 MeV/c2, the proton has a mass of 0.938 GeV/c2. In general, the masses of all hadrons are of the order of 1 GeV/c2, the unified atomic mass unit,1 gram divided by Avogadros number, is almost the mass of a hydrogen atom, which is mostly the mass of the proton. To convert to megaelectronvolts, use the formula,1 u =931.4941 MeV/c2 =0.9314941 GeV/c2, in high-energy physics, the electronvolt is often used as a unit of momentum. A potential difference of 1 volt causes an electron to gain an amount of energy and this gives rise to usage of eV as units of momentum, for the energy supplied results in acceleration of the particle. The dimensions of units are LMT−1. The dimensions of units are L2MT−2. Then, dividing the units of energy by a constant that has units of velocity. In the field of particle physics, the fundamental velocity unit is the speed of light in vacuum c. Thus, dividing energy in eV by the speed of light, the fundamental velocity constant c is often dropped from the units of momentum by way of defining units of length such that the value of c is unity

8.
Joule
–
The joule, symbol J, is a derived unit of energy in the International System of Units. It is equal to the transferred to an object when a force of one newton acts on that object in the direction of its motion through a distance of one metre. It is also the energy dissipated as heat when a current of one ampere passes through a resistance of one ohm for one second. It is named after the English physicist James Prescott Joule, one joule can also be defined as, The work required to move an electric charge of one coulomb through an electrical potential difference of one volt, or one coulomb volt. This relationship can be used to define the volt, the work required to produce one watt of power for one second, or one watt second. This relationship can be used to define the watt and this SI unit is named after James Prescott Joule. As with every International System of Units unit named for a person, note that degree Celsius conforms to this rule because the d is lowercase. — Based on The International System of Units, section 5.2. The CGPM has given the unit of energy the name Joule, the use of newton metres for torque and joules for energy is helpful to avoid misunderstandings and miscommunications. The distinction may be also in the fact that energy is a scalar – the dot product of a vector force. By contrast, torque is a vector – the cross product of a distance vector, torque and energy are related to one another by the equation E = τ θ, where E is energy, τ is torque, and θ is the angle swept. Since radians are dimensionless, it follows that torque and energy have the same dimensions, one joule in everyday life represents approximately, The energy required to lift a medium-size tomato 1 m vertically from the surface of the Earth. The energy released when that same tomato falls back down to the ground, the energy required to accelerate a 1 kg mass at 1 m·s−2 through a 1 m distance in space. The heat required to raise the temperature of 1 g of water by 0.24 °C, the typical energy released as heat by a person at rest every 1/60 s. The kinetic energy of a 50 kg human moving very slowly, the kinetic energy of a 56 g tennis ball moving at 6 m/s. The kinetic energy of an object with mass 1 kg moving at √2 ≈1.4 m/s, the amount of electricity required to light a 1 W LED for 1 s. Since the joule is also a watt-second and the unit for electricity sales to homes is the kW·h. For additional examples, see, Orders of magnitude The zeptojoule is equal to one sextillionth of one joule,160 zeptojoules is equivalent to one electronvolt. The nanojoule is equal to one billionth of one joule, one nanojoule is about 1/160 of the kinetic energy of a flying mosquito

9.
Electricity sector of the United States
–
It also includes many public institutions that regulate the sector. In 1996, there were 3,195 electric utilities in the United States and this leaves a large number of mostly smaller utilities engaged only in power distribution. There were also 65 power marketers, of all utilities,2,020 were publicly owned,932 were rural electric cooperatives, and 243 were investor-owned utilities. The four above-mentioned market segments of the U. S, the safety of nuclear power plants is overseen by the Nuclear Regulatory Commission. Principal sources of US electricity in 2014 were, coal, natural gas, nuclear, Hydro, over the decade 2004—2014, the largest increases in electrical generation came from natural gas, wind and solar. Over the same decade, annual generation from coal decreased 393 billion kWh, in 2008 the average electricity tariff in the U. S. was 9.82 Cents/kilowatt-hour. In 2006-07 electricity tariffs in the U. S. were higher than in Australia, Canada, France, Sweden and Finland, but lower than in Germany, Italy, Spain, and the UK. Residential tariffs vary significantly between states from 6.7 Cents/kWh in West Virginia to 24.1 Cents/kWh in Hawaii, the average residential bill in 2007 was US$100/month. Most investments in the U. S. electricity sector are financed by private companies through debt and this is broken down as, Residential customers directly consumed 1,407.2 Terawatt hours or 33. 93% of the total. This was essentially the same as in 2013, an average residential customer used 911 kWh/ month and with the average US commercial cost of $0. 1252/kWh the average monthly electrical bill would be $114.06. Commercial customers directly consumed 1,352.2 Terawatt hours or 32. 61% of the total and this was about the same as in 2013. An average commercial customer used 6311 kWh/month and with the average US commercial electric cost of $0. 1074/kWh the average monthly electrical bill would be $677.84, industrial customers directly consumed 997.57 Terawatt hours or 24. 06% of the total. This was essentially the same as in 2013 Transportation customers directly consumed 7.76 Terawatt hours or 0. 19% of the total and this was the same as in 2013. Thus, one could say that the US electric distribution system is 90. 79% efficient, electricity consumption per person is based upon data mined from US DOE Energy Information Administration/Electric Power Annual 2014 files Population data is from Demographics of the United States. Per capita consumption in 2014 is 13,005 kilowatt hours and this is down 5 kWh from 2013 and down 4. 3% from a decade ago and down 6. 3% from its peak in 2007. The following table shows the yearly US per capita consumption by fuel source from 1999 to 2014, Gas includes Natural Gas and Other Gases. Misc includes Misc generation, Pumped storage, and Net imports, bio Other includes Waste, Landfill Gas, and Other. Total includes Net imports In 2014 the total installed electricity generation summer capacity, in the United States was 1,068.4 Gigawatts, up 8.4 Gigawatts from 2013

10.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe

11.
Omega Centauri
–
Omega Centauri is a globular cluster in the constellation of Centaurus that was first identified as a non-stellar object by Edmond Halley in 1677. Located at a distance of 15,800 light-years, it is the largest globular cluster in the Milky Way at a diameter of roughly 150 light-years and it is estimated to contain approximately 10 million stars and a total mass equivalent to 4 million solar masses. Omega Centauri is so distinctive from the galactic globular clusters that it is thought to have an alternate origin as the core remnant of a disrupted dwarf galaxy. In 150 A. D. Greco-Roman writer and astronomer Ptolemy catalogued this object in his Almagest as a star on the horses back, german lawyer and cartographer Johann Bayer used Ptolemys data to designate this object Omega Centauri with his 1603 publication of Uranometria. Using a telescope from the South Atlantic island of Saint Helena, English astronomer Edmond Halley rediscovered this object in 1677, in 1715, it was published by Halley among his list of six luminous spots or patches in the Philosophical Transactions of the Royal Society. Swiss astronomer Jean-Philippe de Cheseaux included Omega Centauri in his 1746 list of 21 nebulae, as did French astronomer Lacaille in 1755, who gave it the catalogue number L I.5. It was first recognized as a cluster by Scottish astronomer James Dunlop in 1826. It is the brightest, largest and at 4 million solar masses the most massive globular cluster associated with the Milky Way. Of all the clusters in the Local Group of galaxies, only Mayall II in the Andromeda Galaxy is brighter. Orbiting through the Milky Way, Omega Centauri contains several million Population II stars and is about 12 billion years old, the stars in the core of Omega Centauri are so crowded that they are estimated to average only 0.1 light years away from each other. The internal dynamics have been analyzed using measurements of the velocities of 469 stars. The members of cluster are orbiting the center of mass with a peak velocity dispersion of 7.9 km s−1. The mass distribution inferred from the kinematics is slightly more extended than, though not strongly inconsistent with, hubbles Advanced Camera for Surveys showed that stars are bunching up near the center of Omega Centauri, as evidenced by the gradual increase in starlight near the center. This measurement was interpreted to mean that unseen matter at the core is interacting gravitationally with nearby stars, by comparing these results with standard models, the astronomers concluded that the most likely cause was the gravitational pull of a dense, massive object such as a black hole. They calculated the mass at 4.0 x 104 solar masses. However, more recent work has challenged these conclusions, in particular disputing the proposed location of the cluster center. Calculations using a location for the center found that the velocity of core stars does not vary with distance. The same studies found that starlight does not increase toward the center

12.
Globular cluster
–
A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes, the name of this category of star cluster is derived from the Latin globulus—a small sphere. A globular cluster is known more simply as a globular. Globular clusters are found in the halo of a galaxy and contain considerably more stars and are older than the less dense open clusters. Globular clusters are common, there are about 150 to 158 currently known globular clusters in the Milky Way. These globular clusters orbit the Galaxy at radii of 40 kiloparsecs or more, larger galaxies can have more, Andromeda Galaxy, for instance, may have as many as 500. Some giant elliptical galaxies such as M87, have as many as 13,000 globular clusters, every galaxy of sufficient mass in the Local Group has an associated group of globular clusters, and almost every large galaxy surveyed has been found to possess a system of globular clusters. The Sagittarius Dwarf galaxy and the disputed Canis Major Dwarf galaxy appear to be in the process of donating their associated globular clusters to the Milky Way and this demonstrates how many of this galaxys globular clusters might have been acquired in the past. Although it appears that globular clusters contain some of the first stars to be produced in the galaxy, their origins, the first known globular cluster, now called M22, was discovered in 1665 by Abraham Ihle, a German amateur astronomer. However, given the small aperture of early telescopes, individual stars within a cluster were not resolved until Charles Messier observed M4 in 1764. The first eight globular clusters discovered are shown in the table, subsequently, Abbé Lacaille would list NGC104, NGC4833, M55, M69, and NGC6397 in his 1751–52 catalogue. The M before a number refers to Charles Messiers catalogue, while NGC is from the New General Catalogue by John Dreyer, when William Herschel began his comprehensive survey of the sky using large telescopes in 1782 there were 34 known globular clusters. Herschel discovered another 36 himself and was the first to virtually all of them into stars. He coined the term globular cluster in his Catalogue of a Second Thousand New Nebulae, the number of globular clusters discovered continued to increase, reaching 83 in 1915,93 in 1930 and 97 by 1947. A total of 152 globular clusters have now discovered in the Milky Way galaxy. These additional, undiscovered globular clusters are believed to be hidden behind the gas, beginning in 1914, Harlow Shapley began a series of studies of globular clusters, published in about 40 scientific papers. He examined the RR Lyrae variables in the clusters and would use their period–luminosity relationship for distance estimates, later, it was found that RR Lyrae variables are fainter than Cepheid variables, which caused Shapley to overestimate the distance to the clusters. Of the globular clusters within the Milky Way, the majority are found in a halo around the core

13.
Star
–
A star is a luminous sphere of plasma held together by its own gravity. The nearest star to Earth is the Sun, many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the stars in the Universe, including all stars outside our galaxy, indeed, most are invisible from Earth even through the most powerful telescopes. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the stars lifetime, near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity, and many properties of a star by observing its motion through space, its luminosity. The total mass of a star is the factor that determines its evolution. Other characteristics of a star, including diameter and temperature, change over its life, while the environment affects its rotation. A plot of the temperature of stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram. Plotting a particular star on that allows the age and evolutionary state of that star to be determined. A stars life begins with the collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, the remainder of the stars interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The stars internal pressure prevents it from collapsing further under its own gravity, a star with mass greater than 0.4 times the Suns will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core, as the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a remnant, a white dwarf. Binary and multi-star systems consist of two or more stars that are bound and generally move around each other in stable orbits. When two such stars have a close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, historically, stars have been important to civilizations throughout the world

14.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0

15.
Long and short scales
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions

16.
Long scale
–
Thus, billion means a million millions, trillion means a million billions, and so on. Short scale Every new term greater than million is one thousand times larger than the previous term, thus, billion means a thousand millions, trillion means a thousand billions, and so on. For whole numbers less than a million the two scales are identical. From a thousand million up the two scales diverge, using the words for different numbers, this can cause misunderstanding. Countries where the scale is currently used include most countries in continental Europe and most French-speaking, Spanish-speaking. The short scale is now used in most English-speaking and Arabic-speaking countries, in Brazil, in former Soviet Union, number names are rendered in the language of the country, but are similar everywhere due to shared etymology. Some languages, particularly in East Asia and South Asia, have large number naming systems that are different from both the long and short scales, for example the Indian numbering system. After several decades of increasing informal British usage of the scale, in 1974 the government of the UK adopted it. With very few exceptions, the British usage and American usage are now identical, the first recorded use of the terms short scale and long scale was by the French mathematician Geneviève Guitel in 1975. At and above a million the same names are used to refer to numbers differing by a factor of an integer power of 1,000. Each scale has a justification to explain the use of each such differing numerical name. The short-scale logic is based on powers of one thousand, whereas the long-scale logic is based on powers of one million, in both scales, the prefix bi- refers to 2 and tri- refers to 3, etc. However only in the scale do the prefixes beyond one million indicate the actual power or exponent. In the short scale, the prefixes refer to one less than the exponent, the word, million, derives from the Old French, milion, from the earlier Old Italian, milione, an intensification of the Latin word, mille, a thousand. That is, a million is a big thousand, much as a great gross is a dozen gross or 12×144 =1728, the word, milliard, or its translation, is found in many European languages and is used in those languages for 109. However, it is unknown in American English, which uses billion, and not used in British English, which preferred to use thousand million before the current usage of billion. The financial term, yard, which derives from milliard, is used on financial markets, as, unlike the term, billion, it is internationally unambiguous and phonetically distinct from million. Likewise, many long scale use the word billiard for one thousand long scale billions

17.
Orders of magnitude (numbers)
–
This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantity and probabilities. Mathematics – Writing, Approximately 10−183,800 is a rough first estimate of the probability that a monkey, however, taking punctuation, capitalization, and spacing into account, the actual probability is far lower, around 10−360,783. Computing, The number 1×10−6176 is equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE decimal floating-point value, Computing, The number 6. 5×10−4966 is approximately equal to the smallest positive non-zero value that can be represented by a quadruple-precision IEEE floating-point value. Computing, The number 3. 6×10−4951 is approximately equal to the smallest positive non-zero value that can be represented by a 80-bit x86 double-extended IEEE floating-point value. Computing, The number 1×10−398 is equal to the smallest positive non-zero value that can be represented by a double-precision IEEE decimal floating-point value, Computing, The number 4. 9×10−324 is approximately equal to the smallest positive non-zero value that can be represented by a double-precision IEEE floating-point value. Computing, The number 1×10−101 is equal to the smallest positive non-zero value that can be represented by a single-precision IEEE decimal floating-point value, Mathematics, The probability in a game of bridge of all four players getting a complete suit is approximately 4. 47×10−28. ISO, yocto- ISO, zepto- Mathematics, The probability of matching 20 numbers for 20 in a game of keno is approximately 2.83 × 10−19. ISO, atto- Mathematics, The probability of rolling snake eyes 10 times in a row on a pair of dice is about 2. 74×10−16. ISO, micro- Mathematics – Poker, The odds of being dealt a flush in poker are 649,739 to 1 against. Mathematics – Poker, The odds of being dealt a flush in poker are 72,192 to 1 against. Mathematics – Poker, The odds of being dealt a four of a kind in poker are 4,164 to 1 against, for a probability of 2.4 × 10−4. ISO, milli- Mathematics – Poker, The odds of being dealt a full house in poker are 693 to 1 against, for a probability of 1.4 × 10−3. Mathematics – Poker, The odds of being dealt a flush in poker are 507.8 to 1 against, Mathematics – Poker, The odds of being dealt a straight in poker are 253.8 to 1 against, for a probability of 4 × 10−3. Physics, α =0.007297352570, the fine-structure constant, ISO, deci- Mathematics – Poker, The odds of being dealt only one pair in poker are about 5 to 2 against, for a probability of 0.42. Demography, The population of Monowi, a village in Nebraska. Mathematics, √2 ≈1.414213562373095489, the ratio of the diagonal of a square to its side length. Mathematics, φ ≈1.618033988749895848, the golden ratio Mathematics, the number system understood by most computers, human scale, There are 10 digits on a pair of human hands, and 10 toes on a pair of human feet. Mathematics, The number system used in life, the decimal system, has 10 digits,0,1,2,3,4,5,6,7,8,9

18.
1,000,000,000
–
1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. One billion can also be written as b or bn, in scientific notation, it is written as 1 ×109. The SI prefix giga indicates 1,000,000,000 times the base unit, one billion years may be called eon in astronomy and geology. Previously in British English, the word billion referred exclusively to a million millions, however, this is no longer as common as earlier, and the word has been used to mean one thousand million for some time. The alternative term one thousand million is used in the U. K. or countries such as Spain that uses one thousand million as one million million constitutes a billion. The worded figure, as opposed to the figure is used to differentiate between one thousand million or one billion. The term milliard can also be used to refer to 1,000,000,000, whereas milliard is seldom used in English, in the South Asian numbering system, it is known as 100 crore or 1 Arab. 1000000007 – smallest prime number with 10 digits,1023456789 – smallest pandigital number in base 10. 1026753849 – smallest pandigital square that includes 0,1073741824 –2301073807359 – 14th Kynea number. 1162261467 –3191220703125 –513 1232922769- 35113^2 Centered hexagonal number,1234567890 – pandigital number with the digits in order. 1882341361 – The least prime whose reversal is both square and triangular,1977326743 –7112147483647 – 8th Mersenne prime and the largest signed 32-bit integer. 2147483648 –2312176782336 –6122214502422 – 6th primary pseudoperfect number,2357947691 –1192971215073 – 11th Fibonacci prime. 3405691582 – hexadecimal CAFEBABE, used as a placeholder in programming,3405697037 – hexadecimal CAFED00D, used as a placeholder in programming. 3735928559 – hexadecimal DEADBEEF, used as a placeholder in programming,3486784401 –3204294836223 – 16th Carol number. 4294967291 – Largest prime 32-bit unsigned integer,4294967295 – Maximum 32-bit unsigned integer, perfect totient number, product of the five prime Fermat numbers. 4294967296 –2324294967297 – the first composite Fermat number,6103515625 –5146210001000 – only self-descriptive number in base 10. 6975757441 –1786983776800 – 15th colossally abundant number, 15th superior highly composite number 7645370045 – 27th Pell number,8589934592 –2339043402501 – 25th Motzkin number. 9814072356 – largest square pandigital number, largest pandigital pure power,9876543210 – largest number without redundant digits

19.
1,000,000
–
One million or one thousand thousand is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione, from mille, thousand and it is commonly abbreviated as m or M, further MM, mm, or mn in financial contexts. In scientific notation, it is written as 1×106 or 106, physical quantities can also be expressed using the SI prefix mega, when dealing with SI units, for example,1 megawatt equals 1,000,000 watts. The meaning of the word million is common to the scale and long scale numbering systems, unlike the larger numbers. Information, Not counting spaces, the text printed on 136 pages of an Encyclopædia Britannica, length, There are one million millimeters in a kilometer, and roughly a million sixteenths of an inch in a mile. A typical car tire might rotate a million times in a 1, 200-mile trip, fingers, If the width of a human finger is 2.2 cm, then a million fingers lined up would cover a distance of 22 km. If a person walks at a speed of 4 km/h, it would take approximately five. A city lot 70 by 100 feet is about a million square inches, volume, The cube root of one million is only one hundred, so a million objects or cubic units is contained in a cube only a hundred objects or linear units on a side. A million grains of salt or granulated sugar occupies only about 64 ml. One million cubic inches would be the volume of a room only 8 1⁄3 feet long by 8 1⁄3 feet wide by 8 1⁄3 feet high. Mass, A million cubic millimeters of water would have a volume of one litre, a million millilitres or cubic centimetres of water has a mass of a million grams or one tonne. Weight, A million 80-milligram honey bees would weigh the same as an 80 kg person, landscape, A pyramidal hill 600 feet wide at the base and 100 feet high would weigh about a million tons. Computer, A display resolution of 1,280 by 800 pixels contains 1,024,000 pixels, money, A USD bill of any denomination weighs 1 gram. There are 454 grams in a pound, one million $1 bills would weigh 2,204.62 pounds, or just over 1 ton. Time, A million seconds is 11.57 days, in Indian English and Pakistani English, it is also expressed as 10 lakh or 10 Lac. Lakh is derived from laksh for 100,000 in Sanskrit

20.
100 (number)
–
100 or one hundred is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the hundred or five score in order to differentiate the English. The standard SI prefix for a hundred is hecto-,100 is the basis of percentages, with 100% being a full amount. 100 is the sum of the first nine prime numbers, as well as the sum of pairs of prime numbers e. g.3 +97,11 +89,17 +83,29 +71,41 +59. 100 is the sum of the cubes of the first four integers and this is related by Nicomachuss theorem to the fact that 100 also equals the square of the sum of the first four integers,100 =102 =2. 26 +62 =100, thus 100 is a Leyland number and it is divisible by the number of primes below it,25 in this case. It can not be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient and it can be expressed as a sum of some of its divisors, making it a semiperfect number. 100 is a Harshad number in base 10, and also in base 4, there are exactly 100 prime numbers whose digits are in strictly ascending order. 100 is the smallest number whose common logarithm is a prime number,100 senators are in the U. S One hundred is the atomic number of fermium, an actinide. On the Celsius scale,100 degrees is the temperature of pure water at sea level. The Kármán line lies at an altitude of 100 kilometres above the Earths sea level and is used to define the boundary between Earths atmosphere and outer space. There are 100 blasts of the Shofar heard in the service of Rosh Hashana, a religious Jew is expected to utter at least 100 blessings daily. In Hindu Religion - Mythology Book Mahabharata - Dhritarashtra had 100 sons known as kauravas, the United States Senate has 100 Senators. Most of the currencies are divided into 100 subunits, for example, one euro is one hundred cents. The 100 Euro banknotes feature a picture of a Rococo gateway on the obverse, the U. S. hundred-dollar bill has Benjamin Franklins portrait, the Benjamin is the largest U. S. bill in print. American savings bonds of $100 have Thomas Jeffersons portrait, while American $100 treasury bonds have Andrew Jacksons portrait, One hundred is also, The number of years in a century. The number of pounds in an American short hundredweight, in Greece, India, Israel and Nepal,100 is the police telephone number. In Belgium,100 is the ambulance and firefighter telephone number, in United Kingdom,100 is the operator telephone number

21.
10 (number)
–
10 is an even natural number following 9 and preceding 11. Ten is the base of the numeral system, by far the most common system of denoting numbers in both spoken and written language. The reason for the choice of ten is assumed to be that humans have ten fingers, a collection of ten items is called a decade. The ordinal adjective is decimal, the adjective is denary. Increasing a quantity by one order of magnitude is most widely understood to mean multiplying the quantity by ten, to reduce something by one tenth is to decimate. A theoretical highest number in topics that require a rating, by contrast having 0 or 1 as the lowest number, Ten is a composite number, its proper divisors being 1,2 and 5. Ten is the smallest noncototient, a number that cannot be expressed as the difference between any integer and the number of coprimes below it. Ten is the discrete semiprime and the second member of the discrete semiprime family. Ten has an aliquot sum σ of 8 and is accordingly the first discrete semiprime to be in deficit, all subsequent discrete semiprimes are in deficit. The aliquot sequence for 10 comprises five members with this number being the second member of the 7-aliquot tree. Ten is the smallest semiprime that is the sum of all the prime numbers from its lower factor through its higher factor Only three other small semiprimes share this attribute. It is the sum of only one number the discrete semiprime 14. Ten is the sum of the first three numbers, of the four first numbers, of the square of the two first odd numbers and also of the first four factorials. Ten is the eighth Perrin number, preceded in the sequence by 5,5,7, a polygon with ten sides is a decagon, and 10 is a decagonal number. Because 10 is the product of a power of 2 with nothing but distinct Fermat primes, Ten is also a triangular number, a centered triangular number, and a tetrahedral number. Ten is the number of n queens problem solutions for n =5, Ten is the smallest number whose status as a possible friendly number is unknown. As is the case for any base in its system, ten is the first two-digit number in decimal, any integer written in the decimal system can be multiplied by ten by adding a zero to the end. The Roman numeral for ten is X, it is thought that the V for five is derived from an open hand, incidentally, the Chinese word numeral for ten, is also a cross, 十

22.
1 (number)
–
1, is a number, a numeral, and the name of the glyph representing that number. It represents a single entity, the unit of counting or measurement, for example, a line segment of unit length is a line segment of length 1. It is also the first of the series of natural numbers. The word one can be used as a noun, an adjective and it comes from the English word an, which comes from the Proto-Germanic root *ainaz. The Proto-Germanic root *ainaz comes from the Proto-Indo-European root *oi-no-, compare the Proto-Germanic root *ainaz to Old Frisian an, Gothic ains, Danish een, Dutch een, German eins and Old Norse einn. Compare the Proto-Indo-European root *oi-no- to Greek oinos, Latin unus, Old Persian aivam, Old Church Slavonic -inu and ino-, Lithuanian vienas, Old Irish oin, One, sometimes referred to as unity, is the first non-zero natural number. It is thus the integer before two and after zero, and the first positive odd number, any number multiplied by one is that number, as one is the identity for multiplication. As a result,1 is its own factorial, its own square, its own cube, One is also the result of the empty product, as any number multiplied by one is itself. It is also the natural number that is neither composite nor prime with respect to division. The Gupta wrote it as a line, and the Nagari sometimes added a small circle on the left. The Nepali also rotated it to the right but kept the circle small and this eventually became the top serif in the modern numeral, but the occasional short horizontal line at the bottom probably originates from similarity with the Roman numeral I. Where the 1 is written with an upstroke, the number 7 has a horizontal stroke through the vertical line. While the shape of the 1 character has an ascender in most modern typefaces, in typefaces with text figures, many older typewriters do not have a separate symbol for 1 and use the lowercase letter l instead. It is possible to find cases when the uppercase J is used,1 cannot be used as the base of a positional numeral system, as the only digit that would be permitted in such a system would be 0. Since the base 1 exponential function always equals 1, its inverse does not exist, there are two ways to write the real number 1 as a recurring decimal, as 1.000. and as 0.999. There is only one way to represent the real number 1 as a Dedekind cut, in a multiplicative group or monoid, the identity element is sometimes denoted 1, but e is also traditional. However,1 is especially common for the identity of a ring. When such a ring has characteristic n not equal to 0,1 is the first figurate number of every kind, such as triangular number, pentagonal number and centered hexagonal number, to name just a few

23.
Binary prefix
–
A binary prefix is a unit prefix for multiples of units in data processing, data transmission, and digital information, notably the bit and the byte, to indicate multiplication by a power of 2. The computer industry has used the units kilobyte, megabyte, and gigabyte, and the corresponding symbols KB, MB. In citations of main memory capacity, gigabyte customarily means 1073741824 bytes, as this is the third power of 1024, and 1024 is a power of two, this usage is referred to as a binary measurement. In most other contexts, the uses the multipliers kilo, mega, giga, etc. in a manner consistent with their meaning in the International System of Units. For example, a 500 gigabyte hard disk holds 500000000000 bytes, in contrast with the binary prefix usage, this use is described as a decimal prefix, as 1000 is a power of 10. The use of the same unit prefixes with two different meanings has caused confusion, in 2008, the IEC prefixes were incorporated into the ISO/IEC80000 standard. Early computers used one of two addressing methods to access the memory, binary or decimal. For example, the IBM701 used binary and could address 2048 words of 36 bits each, while the IBM702 used decimal, by the mid-1960s, binary addressing had become the standard architecture in most computer designs, and main memory sizes were most commonly powers of two. Early computer system documentation would specify the size with an exact number such as 4096,8192. These are all powers of two, and furthermore are small multiples of 210, or 1024, as storage capacities increased, several different methods were developed to abbreviate these quantities. The method most commonly used today uses prefixes such as kilo, mega, giga, and corresponding symbols K, M, and G, the prefixes kilo- and mega-, meaning 1000 and 1000000 respectively, were commonly used in the electronics industry before World War II. Along with giga- or G-, meaning 1000000000, they are now known as SI prefixes after the International System of Units, introduced in 1960 to formalize aspects of the metric system. The International System of Units does not define units for digital information and this usage is not consistent with the SI. Compliance with the SI requires that the prefixes take their 1000-based meaning, the use of K in the binary sense as in a 32K core meaning 32 ×1024 words, i. e.32768 words, can be found as early as 1959. Gene Amdahls seminal 1964 article on IBM System/360 used 1K to mean 1024 and this style was used by other computer vendors, the CDC7600 System Description made extensive use of K as 1024. Thus the first binary prefix was born, the exact values 32768 words,65536 words and 131072 words would then be described as 32K, 65K and 131K. This style was used from about 1965 to 1975 and these two styles were used loosely around the same time, sometimes by the same company. In discussions of binary-addressed memories, the size was evident from context

24.
International Bureau of Weights and Measures
–
The organisation is usually referred to by its French initialism, BIPM. The BIPM reports to the International Committee for Weights and Measures and these organizations are also commonly referred to by their French initialisms. The BIPM was created on 20 May 1875, following the signing of the Metre Convention, under the authority of the Metric Convention, the BIPM helps to ensure uniformity of SI weights and measures around the world. It does so through a series of committees, whose members are the national metrology laboratories of the Conventions member states. The BIPM carries out measurement-related research and it takes part in and organises international comparisons of national measurement standards and performs calibrations for member states. The BIPM has an important role in maintaining accurate worldwide time of day and it combines, analyses, and averages the official atomic time standards of member nations around the world to create a single, official Coordinated Universal Time. The BIPM is also the keeper of the prototype of the kilogram. Metrologia Institute for Reference Materials and Measurements International Organization for Standardization National Institute of Standards and Technology Official website

25.
Astronomy and Astrophysics
–
Astronomy and Astrophysics is a peer-reviewed scientific journal covering theoretical, observational, and instrumental astronomy and astrophysics. It is one of the journals for astronomy in the world. The journal is published by EDP Sciences in 16 issues per year, previous editors in chief include Claude Bertout, James Lequeux, Michael Grewing, Catherine Cesarsky and George Contopoulos. Astronomy and Astrophysics was formed in 1969 by the merging of several journals of individual European countries into one comprehensive publication. Astronomy and Astrophysics initially published articles in either English, French, or German and they were eventually discontinued, in part due to difficulties in finding adequately specialized independent referees who were also fluent in those languages. The original sponsoring countries were the four countries whose journals merged to form Astronomy and Astrophysics, together with Belgium, Denmark, Finland, the European Southern Observatory also participated as a member country. Norway later withdrew, but Austria, Greece, Italy, Spain, the Czech Republic, Estonia, Hungary, Poland, and Slovakia all joined as new members in the 1990s. Argentina became the first non-European country to gain membership in 2005. Brazil, Chile, and Portugal all gained observer status at time and have since progressed to full membership. This journal is listed in the databases, All letters to the editor. Articles in the sections of the journal are made freely available 12 months after publication, through the publishers site. Authors have the option to pay for immediate open access, the Astrophysical Journal The Astronomical Journal Monthly Notices of the Royal Astronomical Society History and purpose of Astronomy and Astrophysics journal