1.
Plane (geometry)
–
In mathematics, a plane is a flat, two-dimensional surface that extends infinitely far. A plane is the analogue of a point, a line. When working exclusively in two-dimensional Euclidean space, the article is used, so. Many fundamental tasks in mathematics, geometry, trigonometry, graph theory and graphing are performed in a space, or in other words. Euclid set forth the first great landmark of mathematical thought, a treatment of geometry. He selected a small core of undefined terms and postulates which he used to prove various geometrical statements. Although the plane in its sense is not directly given a definition anywhere in the Elements. In his work Euclid never makes use of numbers to measure length, angle, in this way the Euclidean plane is not quite the same as the Cartesian plane. This section is concerned with planes embedded in three dimensions, specifically, in R3. In a Euclidean space of any number of dimensions, a plane is determined by any of the following. A line and a point not on that line, a line is either parallel to a plane, intersects it at a single point, or is contained in the plane. Two distinct lines perpendicular to the plane must be parallel to each other. Two distinct planes perpendicular to the line must be parallel to each other. Specifically, let r0 be the vector of some point P0 =. The plane determined by the point P0 and the vector n consists of those points P, with position vector r, such that the vector drawn from P0 to P is perpendicular to n. Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the plane can be described as the set of all points r such that n ⋅ =0. Expanded this becomes a + b + c =0, which is the form of the equation of a plane. This is just a linear equation a x + b y + c z + d =0 and this familiar equation for a plane is called the general form of the equation of the plane
2.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra
3.
Polytope
–
In elementary geometry, a polytope is a geometric object with flat sides, and may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. Polytopes in more than three dimensions were first discovered by Ludwig Schläfli, the German term polytop was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as polytope by Alicia Boole Stott. The term polytope is nowadays a broad term that covers a class of objects. Many of these definitions are not equivalent, resulting in different sets of objects being called polytopes and they represent different approaches to generalizing the convex polytopes to include other objects with similar properties. In this approach, a polytope may be regarded as a tessellation or decomposition of some given manifold, an example of this approach defines a polytope as a set of points that admits a simplicial decomposition. However this definition does not allow star polytopes with interior structures, the discovery of star polyhedra and other unusual constructions led to the idea of a polyhedron as a bounding surface, ignoring its interior. A polyhedron is understood as a surface whose faces are polygons, a 4-polytope as a hypersurface whose facets are polyhedra and this approach is used for example in the theory of abstract polytopes. In certain fields of mathematics, the terms polytope and polyhedron are used in a different sense and this terminology is typically confined to polytopes and polyhedra that are convex. A polytope comprises elements of different dimensionality such as vertices, edges, faces, cells, terminology for these is not fully consistent across different authors. For example, some authors use face to refer to an -dimensional element while others use face to denote a 2-face specifically, authors may use j-face or j-facet to indicate an element of j dimensions. Some use edge to refer to a ridge, while H. S. M. Coxeter uses cell to denote an -dimensional element, the terms adopted in this article are given in the table below, An n-dimensional polytope is bounded by a number of -dimensional facets. These facets are themselves polytopes, whose facets are -dimensional ridges of the original polytope, Every ridge arises as the intersection of two facets. Ridges are once again polytopes whose facets give rise to -dimensional boundaries of the original polytope and these bounding sub-polytopes may be referred to as faces, or specifically j-dimensional faces or j-faces. A 0-dimensional face is called a vertex, and consists of a single point, a 1-dimensional face is called an edge, and consists of a line segment. A 2-dimensional face consists of a polygon, and a 3-dimensional face, sometimes called a cell, the convex polytopes are the simplest kind of polytopes, and form the basis for several different generalizations of the concept of polytopes. A convex polytope is defined as the intersection of a set of half-spaces. This definition allows a polytope to be neither bounded nor finite, Polytopes are defined in this way, e. g. in linear programming
4.
Polygon
–
In elementary geometry, a polygon /ˈpɒlɪɡɒn/ is a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed polygonal chain or circuit. These segments are called its edges or sides, and the points where two edges meet are the vertices or corners. The interior of the polygon is called its body. An n-gon is a polygon with n sides, for example, a polygon is a 2-dimensional example of the more general polytope in any number of dimensions. The basic geometrical notion of a polygon has been adapted in various ways to suit particular purposes, mathematicians are often concerned only with the bounding closed polygonal chain and with simple polygons which do not self-intersect, and they often define a polygon accordingly. A polygonal boundary may be allowed to intersect itself, creating star polygons and these and other generalizations of polygons are described below. The word polygon derives from the Greek adjective πολύς much, many and it has been suggested that γόνυ knee may be the origin of “gon”. Polygons are primarily classified by the number of sides, Polygons may be characterized by their convexity or type of non-convexity, Convex, any line drawn through the polygon meets its boundary exactly twice. As a consequence, all its interior angles are less than 180°, equivalently, any line segment with endpoints on the boundary passes through only interior points between its endpoints. Non-convex, a line may be found which meets its boundary more than twice, equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple, the boundary of the polygon does not cross itself, there is at least one interior angle greater than 180°. Star-shaped, the interior is visible from at least one point. The polygon must be simple, and may be convex or concave, self-intersecting, the boundary of the polygon crosses itself. Branko Grünbaum calls these coptic, though this term does not seem to be widely used, star polygon, a polygon which self-intersects in a regular way. A polygon cannot be both a star and star-shaped, equiangular, all corner angles are equal. Cyclic, all lie on a single circle, called the circumcircle. Isogonal or vertex-transitive, all lie within the same symmetry orbit. The polygon is cyclic and equiangular
5.
Tessellation
–
A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries, a periodic tiling has a repeating pattern. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups, a tiling that lacks a repeating pattern is called non-periodic. An aperiodic tiling uses a set of tile shapes that cannot form a repeating pattern. In the geometry of higher dimensions, a space-filling or honeycomb is called a tessellation of space. A real physical tessellation is a made of materials such as cemented ceramic squares or hexagons. Such tilings may be decorative patterns, or may have such as providing durable and water-resistant pavement. Historically, tessellations were used in Ancient Rome and in Islamic art such as in the decorative geometric tiling of the Alhambra palace, in the twentieth century, the work of M. C. Escher often made use of tessellations, both in ordinary Euclidean geometry and in geometry, for artistic effect. Tessellations are sometimes employed for decorative effect in quilting, Tessellations form a class of patterns in nature, for example in the arrays of hexagonal cells found in honeycombs. Tessellations were used by the Sumerians in building wall decorations formed by patterns of clay tiles, decorative mosaic tilings made of small squared blocks called tesserae were widely employed in classical antiquity, sometimes displaying geometric patterns. In 1619 Johannes Kepler made a documented study of tessellations. He wrote about regular and semiregular tessellations in his Harmonices Mundi, he was possibly the first to explore and to explain the structures of honeycomb. Some two hundred years later in 1891, the Russian crystallographer Yevgraf Fyodorov proved that every periodic tiling of the features one of seventeen different groups of isometries. Fyodorovs work marked the beginning of the mathematical study of tessellations. Other prominent contributors include Shubnikov and Belov, and Heinrich Heesch, in Latin, tessella is a small cubical piece of clay, stone or glass used to make mosaics. The word tessella means small square and it corresponds to the everyday term tiling, which refers to applications of tessellations, often made of glazed clay. Tessellation or tiling in two dimensions is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules
6.
Square
–
In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles. It can also be defined as a rectangle in which two adjacent sides have equal length, a square with vertices ABCD would be denoted ◻ ABCD. e. A rhombus with equal diagonals a convex quadrilateral with sides a, b, c, d whose area is A =12 =12. Opposite sides of a square are both parallel and equal in length, all four angles of a square are equal. All four sides of a square are equal, the diagonals of a square are equal. The square is the n=2 case of the families of n-hypercubes and n-orthoplexes, a truncated square, t, is an octagon. An alternated square, h, is a digon, the perimeter of a square whose four sides have length ℓ is P =4 ℓ and the area A is A = ℓ2. In classical times, the power was described in terms of the area of a square. This led to the use of the square to mean raising to the second power. The area can also be calculated using the diagonal d according to A = d 22. In terms of the circumradius R, the area of a square is A =2 R2, since the area of the circle is π R2, in terms of the inradius r, the area of the square is A =4 r 2. Because it is a polygon, a square is the quadrilateral of least perimeter enclosing a given area. Dually, a square is the quadrilateral containing the largest area within a given perimeter. Indeed, if A and P are the area and perimeter enclosed by a quadrilateral, then the isoperimetric inequality holds,16 A ≤ P2 with equality if. The diagonals of a square are 2 times the length of a side of the square and this value, known as the square root of 2 or Pythagoras constant, was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles, if a figure is both a rectangle and a rhombus, then it is a square. If a circle is circumscribed around a square, the area of the circle is π /2 times the area of the square, if a circle is inscribed in the square, the area of the circle is π /4 times the area of the square. A square has an area than any other quadrilateral with the same perimeter
7.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors
8.
4-polytope
–
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements, vertices, edges, faces, each face is shared by exactly two cells. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron, topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space, similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space, a 4-polytope is a closed four-dimensional figure. It comprises vertices, edges, faces and cells, a cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i. e. it is not a compound, the most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. 4-polytopes cannot be seen in space due to their extra dimension. Several techniques are used to help visualise them, Orthogonal projection Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes. Perspective projection Just as a 3D shape can be projected onto a flat sheet, sectioning Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut hypersurface in three dimensions. A sequence of sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce an animation of these cross sections. The topology of any given 4-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, like all polytopes, 4-polytopes may be classified based on properties like convexity and symmetry. Self-intersecting 4-polytopes are also known as star 4-polytopes, from analogy with the shapes of the non-convex star polygons. A 4-polytope is regular if it is transitive on its flags and this means that its cells are all congruent regular polyhedra, and similarly its vertex figures are congruent and of another kind of regular polyhedron
9.
Tesseract
–
In geometry, the tesseract is the four-dimensional analog of the cube, the tesseract is to the cube as the cube is to the square. Just as the surface of the consists of six square faces. The tesseract is one of the six convex regular 4-polytopes, the tesseract is also called an 8-cell, C8, octachoron, octahedroid, cubic prism, and tetracube. It is the four-dimensional hypercube, or 4-cube as a part of the family of hypercubes or measure polytopes. In this publication, as well as some of Hintons later work, the tesseract can be constructed in a number of ways. As a regular polytope with three cubes folded together around every edge, it has Schläfli symbol with hyperoctahedral symmetry of order 384, constructed as a 4D hyperprism made of two parallel cubes, it can be named as a composite Schläfli symbol ×, with symmetry order 96. As a 4-4 duoprism, a Cartesian product of two squares, it can be named by a composite Schläfli symbol ×, with symmetry order 64, as an orthotope it can be represented by composite Schläfli symbol × × × or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the dual polytope of the tesseract is called the hexadecachoron, or 16-cell, with Schläfli symbol. The standard tesseract in Euclidean 4-space is given as the hull of the points. That is, it consists of the points, A tesseract is bounded by eight hyperplanes, each pair of non-parallel hyperplanes intersects to form 24 square faces in a tesseract. Three cubes and three squares intersect at each edge, there are four cubes, six squares, and four edges meeting at every vertex. All in all, it consists of 8 cubes,24 squares,32 edges, the construction of a hypercube can be imagined the following way, 1-dimensional, Two points A and B can be connected to a line, giving a new line segment AB. 2-dimensional, Two parallel line segments AB and CD can be connected to become a square, 3-dimensional, Two parallel squares ABCD and EFGH can be connected to become a cube, with the corners marked as ABCDEFGH. 4-dimensional, Two parallel cubes ABCDEFGH and IJKLMNOP can be connected to become a hypercube and it is possible to project tesseracts into three- or two-dimensional spaces, as projecting a cube is possible on a two-dimensional space. Projections on the 2D-plane become more instructive by rearranging the positions of the projected vertices, the scheme is similar to the construction of a cube from two squares, juxtapose two copies of the lower-dimensional cube and connect the corresponding vertices. Each edge of a tesseract is of the same length, the regular complex polytope 42, in C2 has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 42 has 16 vertices, and 8 4-edges and its symmetry is 42, order 32. It also has a lower construction, or 4×4, with symmetry 44