1.
10-cube
–
In geometry, a 10-cube is a ten-dimensional hypercube. It can be named by its Schläfli symbol, being composed of 3 9-cubes around each 8-face and it is a part of an infinite family of polytopes, called hypercubes. The dual of a dekeract can be called a 10-orthoplex or decacross, cartesian coordinates for the vertices of a dekeract centered at the origin and edge length 2 are while the interior of the same consists of all points with −1 < xi <1. Applying an alternation operation, deleting alternating vertices of the dekeract, creates another uniform polytope, called a 10-demicube, which has 20 demienneractic and 512 enneazettonic facets. Coxeter, Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8, p.296, Table I, Regular Polytopes, three regular polytopes in n-dimensions H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973, p.296, Table I, Regular Polytopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 10D uniform polytopes o3o3o3o3o3o3o3o3o4x - deker. Archived from the original on 4 February 2007, multi-dimensional Glossary, hypercube Garrett Jones Sloanes A135289, Hypercubes, 10-cube. The On-Line Encyclopedia of Integer Sequences

2.
Icosagon
–
In geometry, an icosagon or 20-gon is a twenty-sided polygon. The sum of any icosagons interior angles is 3240 degrees, the regular icosagon has Schläfli symbol, and can also be constructed as a truncated decagon, t, or a twice-truncated pentagon, tt. One interior angle in a regular icosagon is 162°, meaning that one exterior angle would be 18°, the area of a regular icosagon with edge length t is A =5 t 2 ≃31.5687 t 2. In terms of the radius R of its circumcircle, the area is A =5 R22, since the area of the circle is π R2, the Big Wheel on the popular US game show The Price Is Right has an icosagonal cross-section. The Globe, the outdoor theater used by William Shakespeares acting company, was discovered to have built on an icosagonal foundation when a partial excavation was done in 1989. As a golygonal path, the swastika is considered to be an irregular icosagon, a regular square, pentagon, and icosagon can completely fill a plane vertex. E20 E1 ¯ E1 F ¯ = E20 F ¯ E20 E1 ¯ =1 +52 = φ ≈1.618 The regular icosagon has Dih20 symmetry, order 40. There are 5 subgroup dihedral symmetries, and, and 6 cyclic group symmetries and these 10 symmetries can be seen in 16 distinct symmetries on the icosagon, a larger number because the lines of reflections can either pass through vertices or edges. John Conway labels these by a letter and group order, full symmetry of the regular form is r40 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices or edges, cyclic symmetries in the middle column are labeled as g for their central gyration orders. Each subgroup symmetry allows one or more degrees of freedom for irregular forms, only the g20 subgroup has no degrees of freedom but can seen as directed edges. These two forms are duals of each other and have half the order of the regular icosagon. An icosagram is a 20-sided star polygon, represented by symbol, there are three regular forms given by Schläfli symbols, and. There are also five regular star figures using the vertex arrangement,2,4,5,2,4. Deeper truncations of the regular decagon and decagram can produce isogonal intermediate icosagram forms with equally spaced vertices, a regular icosagram, can be seen as a quasitruncated decagon, t=. Similarly a decagram, has a quasitruncation t=, and finally a simple truncation of a decagram gives t=

3.
Rectified 10-cubes
–
In ten-dimensional geometry, a rectified 10-cube is a convex uniform 10-polytope, being a rectification of the regular 10-cube. There are 10 rectifications of the 10-cube, with the zeroth being the 10-cube itself, vertices of the rectified 10-cube are located at the edge-centers of the 10-cube. Vertices of the birectified 10-cube are located in the face centers of the 10-cube. Vertices of the trirectified 10-cube are located in the cell centers of the 10-cube. The others are simply constructed relative to the 10-cube dual polytpoe. These polytopes are part of a family 1023 uniform 10-polytopes with BC10 symmetry. S. M, coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary

4.
Rectified 10-orthoplexes
–
In ten-dimensional geometry, a rectified 10-orthoplex is a convex uniform 10-polytope, being a rectification of the regular 10-orthoplex. There are 10 rectifications of the 10-orthoplex, vertices of the rectified 10-orthoplex are located at the edge-centers of the 9-orthoplex. Vertices of the birectified 10-orthoplex are located in the face centers of the 10-orthoplex. Vertices of the trirectified 10-orthoplex are located in the cell centers of the 10-orthoplex. These polytopes are part of a family 1023 uniform 10-polytopes with BC10 symmetry, in ten-dimensional geometry, a rectified 10-orthoplex is a 10-polytope, being a rectification of the regular 10-orthoplex. The rectified 10-orthoplex is the figure for the demidekeractic honeycomb. The vertices can be seen in 3 hyperplanes, with the 45 vertices rectified 9-simplices facets on opposite sides, when combined with the 20 vertices of the 9-orthoplex, these vertices represent the 200 root vectors of the simple Lie group B10. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary

5.
Uniform 10-polytope
–
In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge. A uniform 10-polytope is one which is vertex-transitive, and constructed from uniform facets, Regular 10-polytopes can be represented by the Schläfli symbol, with x 9-polytope facets around each peak. There are exactly three convex regular 10-polytopes, - 10-simplex - 10-cube - 10-orthoplex There are no nonconvex regular 10-polytopes. The topology of any given 10-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 10-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, There are 512+16-1=527 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. 31 are shown below, all one and two ringed forms, and the final omnitruncated form, bowers-style acronym names are given in parentheses for cross-referencing. There are 1023 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings, twelve cases are shown below, ten single-ring forms, and two truncations. Bowers-style acronym names are given in parentheses for cross-referencing, the D10 family has symmetry of order 1,857,945,600. This family has 3×256−1=767 Wythoffian uniform polytopes, generated by marking one or more nodes of the D10 Coxeter-Dynkin diagram, of these,511 are repeated from the B10 family and 256 are unique to this family, with 2 listed below. Bowers-style acronym names are given in parentheses for cross-referencing, however, there are 3 noncompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 9-space as permutations of rings of the Coxeter diagrams. Miller, Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, N. W, johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. Dissertation, University of Toronto,1966 Klitzing, Richard, polytope names Polytopes of Various Dimensions, Jonathan Bowers Multi-dimensional Glossary Glossary for hyperspace, George Olshevsky