RELATED RESEARCH TOPICS

1.
10-orthoplex
–
It has two constructed forms, the first being regular with Schläfli symbol, and the second with alternately labeled facets, with Schläfli symbol or Coxeter symbol 711. It is one of an family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 10-hypercube or 10-cube, decacross is derived from combining the family name cross polytope with deca for ten in Greek Chilliaicositetraxennon as a 1024-facetted 10-polytope. Cartesian coordinates for the vertices of a 10-orthoplex, centred at the origin are, Every vertex pair is connected by an edge, Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M. Coxeter, Regular and Semi Regular Polytopes I, H. S. M, Coxeter, Regular and Semi-Regular Polytopes II, H. S. M. Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D. 10D uniform polytopes x3o3o3o3o3o3o3o3o4o - ka, archived from the original on 4 February 2007. Polytopes of Various Dimensions Multi-dimensional Glossary