1.
Pentagon
–
In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting, a self-intersecting regular pentagon is called a pentagram. A regular pentagon has Schläfli symbol and interior angles are 108°, a regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5. The diagonals of a regular pentagon are in the golden ratio to its sides. The area of a regular convex pentagon with side length t is given by A = t 225 +1054 =5 t 2 tan 4 ≈1.720 t 2. A pentagram or pentangle is a regular star pentagon and its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio. The area of any polygon is, A =12 P r where P is the perimeter of the polygon. Substituting the regular pentagons values for P and r gives the formula A =12 ×5 t × t tan 2 =5 t 2 tan 4 with side length t, like every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the r of the inscribed circle. Like every regular polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, the regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon, one method to construct a regular pentagon in a given circle is described by Richmond and further discussed in Cromwells Polyhedra. The top panel shows the construction used in Richmonds method to create the side of the inscribed pentagon, the circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius and this point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the axis at point Q. A horizontal line through Q intersects the circle at point P, to determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras theorem and two sides, the hypotenuse of the triangle is found as 5 /2

2.
Pentagram
–
A pentagram is the shape of a five-pointed star drawn with five straight strokes. The word pentagram comes from the Greek word πεντάγραμμον, from πέντε, five + γραμμή, the word pentacle is sometimes used synonymously with pentagram The word pentalpha is a learned modern revival of a post-classical Greek name of the shape. The pentagram is the simplest regular star polygon, the pentagram contains ten points and fifteen line segments. It is represented by the Schläfli symbol, like a regular pentagon, and a regular pentagon with a pentagram constructed inside it, the regular pentagram has as its symmetry group the dihedral group of order 10. The pentagram can be constructed by connecting alternate vertices of a pentagon and it can also be constructed as a stellation of a pentagon, by extending the edges of a pentagon until the lines intersect. Each intersection of edges sections the edges in the golden ratio, also, the ratio of the length of the shorter segment to the segment bounded by the two intersecting edges is φ. As the four-color illustration shows, r e d g r e e n = g r e e n b l u e = b l u e m a g e n t a = φ. The pentagram includes ten isosceles triangles, five acute and five obtuse isosceles triangles, in all of them, the ratio of the longer side to the shorter side is φ. The acute triangles are golden triangles, the obtuse isosceles triangle highlighted via the colored lines in the illustration is a golden gnomon. The pentagram of Venus is the apparent path of the planet Venus as observed from Earth, the tips of the five loops at the center of the figure have the same geometric relationship to one another as the five vertices, or points, of a pentagram. Groups of five intersections of curves, equidistant from the center, have the same geometric relationship. In early monumental Sumerian script, or cuneiform, a pentagram glyph served as a logogram for the word ub, meaning corner, angle, nook, the word Pentemychos was the title of the cosmogony of Pherecydes of Syros. Here, the five corners are where the seeds of Chronos are placed within the Earth in order for the cosmos to appear. The pentangle plays an important symbolic role in the 14th-century English poem Sir Gawain, heinrich Cornelius Agrippa and others perpetuated the popularity of the pentagram as a magic symbol, attributing the five neoplatonic elements to the five points, in typical Renaissance fashion. By the mid-19th century a distinction had developed amongst occultists regarding the pentagrams orientation. With a single point upwards it depicted spirit presiding over the four elements of matter, however, the influential writer Eliphas Levi called it evil whenever the symbol appeared the other way up. It is the goat of lust attacking the heavens with its horns and it is the sign of antagonism and fatality. It is the goat of lust attacking the heavens with its horns, faust, The pentagram thy peace doth mar

3.
Regular polytope
–
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces — cells, faces and so on — are also transitive on the symmetries of the polytope, Regular polytopes are the generalized analog in any number of dimensions of regular polygons and regular polyhedra. The strong symmetry of the regular polytopes gives them an aesthetic quality that interests both non-mathematicians and mathematicians, classically, a regular polytope in n dimensions may be defined as having regular facets and regular vertex figures. These two conditions are sufficient to ensure that all faces are alike and all vertices are alike, note, however, that this definition does not work for abstract polytopes. A regular polytope can be represented by a Schläfli symbol of the form, with regular facets as, Regular polytopes are classified primarily according to their dimensionality. They can be classified according to symmetry. For example, the cube and the regular octahedron share the same symmetry, indeed, symmetry groups are sometimes named after regular polytopes, for example the tetrahedral and icosahedral symmetries. Three special classes of regular polytope exist in every dimensionality, Regular simplex Measure polytope Cross polytope In two dimensions there are many regular polygons. In three and four dimensions there are more regular polyhedra and 4-polytopes besides these three. In five dimensions and above, these are the only ones, see also the list of regular polytopes. The idea of a polytope is sometimes generalised to include related kinds of geometrical object, some of these have regular examples, as discussed in the section on historical discovery below. A concise symbolic representation for regular polytopes was developed by Ludwig Schläfli in the 19th Century, the notation is best explained by adding one dimension at a time. A convex regular polygon having n sides is denoted by, so an equilateral triangle is, a square, and so on indefinitely. A regular star polygon which winds m times around its centre is denoted by the fractional value, a regular polyhedron having faces with p faces joining around a vertex is denoted by. The nine regular polyhedra are and. is the figure of the polyhedron. A regular 4-polytope having cells with q cells joining around an edge is denoted by, the vertex figure of the 4-polytope is a. A five-dimensional regular polytope is an, the dual of a regular polytope is also a regular polytope. The Schläfli symbol for the dual polytope is just the original written backwards, is self-dual, is dual to, to

4.
4 21 polytope
–
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper and he called it an 8-ic semi-regular figure. Its Coxeter symbol is 421, describing its bifurcating Coxeter-Dynkin diagram, the rectified 421 is constructed by points at the mid-edges of the 421. The birectified 421 is constructed by points at the face centers of the 421. The trirectified 421 is constructed by points at the centers of the 421. The 421 is composed of 17,280 7-simplex and 2,160 7-orthoplex facets and its vertex figure is the 321 polytope. For visualization this 8-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 240 vertices within a regular triacontagon and its 6720 edges are drawn between the 240 vertices. Specific higher elements can also be extracted and drawn on this projection, as its 240 vertices represent the root vectors of the simple Lie group E8, the polytope is sometimes referred to as the E8 polytope. The vertices of this polytope can be obtained by taking the 240 integral octonions of norm 1, because the octonions are a nonassociative normed division algebra, these 240 points have a multiplication operation making them not into a group but rather a loop, in fact a Moufang loop. This polytope was discovered by Thorold Gosset, who described it in his 1900 paper as an 8-ic semi-regular figure and it is the last finite semiregular figure in his enumeration, semiregular to him meaning that it contained only regular facets. E. L. Elte named it V240 in his 1912 listing of semiregular polytopes, Coxeter called it 421 because its Coxeter-Dynkin diagram has three branches of length 4,2, and 1, with a single node on the terminal node of the 4 branch. Dischiliahectohexaconta-myriaheptachiliadiacosioctaconta-zetton - 2160-17280 facetted polyzetton It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space and these 56 points are the vertices of a 321 polytope in 7 dimensions. These 126 points are the vertices of a 231 polytope in 7 dimensions. Each vertex also has 56 third nearest neighbors, which are the negatives of its nearest neighbors, there are 17,280 simplex facets and 2160 orthoplex facets. Since every 7-simplex has 7 6-simplex facets, each incident to no other 6-simplex, since every 7-orthoplex has 128 6-simplex facets, half of which are not incident to 7-simplexes, the 421 polytope has 138,240 6-simplex faces that are not facets of 7-simplexes. The 421 polytope thus has two kinds of 6-simplex faces, not interchanged by symmetries of this polytope, the total number of 6-simplex faces is 259200. The vertex figure of a polytope is obtained by removing the ringed node. These graphs represent orthographic projections in the E8, E7, E6, the vertex colors are by overlapping multiplicity in the projection, colored by increasing order of multiplicities as red, orange, yellow, green

5.
7-simplex
–
In 7-dimensional geometry, a 7-simplex is a self-dual regular 7-polytope. It has 8 vertices,28 edges,56 triangle faces,70 tetrahedral cells,56 5-cell 5-faces,28 5-simplex 6-faces and its dihedral angle is cos−1, or approximately 81. 79°. It can also be called an octaexon, or octa-7-tope, as an 8-facetted polytope in 7-dimensions, the name octaexon is derived from octa for eight facets in Greek and -ex for having six-dimensional facets, and -on. Jonathan Bowers gives an octaexon the acronym oca, the Cartesian coordinates of the vertices of an origin-centered regular octaexon having edge length 2 are, More simply, the vertices of the 7-simplex can be positioned in 8-space as permutations of. This construction is based on facets of the 8-orthoplex and this polytope is a facet in the uniform tessellation 331 with Coxeter-Dynkin diagram, This polytope is one of 71 uniform 7-polytopes with A7 symmetry. Polytopes of Various Dimensions Multi-dimensional Glossary

6.
Simplex
–
In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a polytope which is the convex hull of its k +1 vertices. More formally, suppose the k +1 points u 0, …, u k ∈ R k are affinely independent, then, the simplex determined by them is the set of points C =. For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, a single point may be considered a 0-simplex, and a line segment may be considered a 1-simplex. A simplex may be defined as the smallest convex set containing the given vertices, a regular simplex is a simplex that is also a regular polytope. A regular n-simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the edge length. In topology and combinatorics, it is common to “glue together” simplices to form a simplicial complex, the associated combinatorial structure is called an abstract simplicial complex, in which context the word “simplex” simply means any finite set of vertices. A 1-simplex is a line segment, the convex hull of any nonempty subset of the n+1 points that define an n-simplex is called a face of the simplex. In particular, the hull of a subset of size m+1 is an m-simplex. The 0-faces are called the vertices, the 1-faces are called the edges, the -faces are called the facets, in general, the number of m-faces is equal to the binomial coefficient. Consequently, the number of m-faces of an n-simplex may be found in column of row of Pascals triangle, a simplex A is a coface of a simplex B if B is a face of A. Face and facet can have different meanings when describing types of simplices in a simplicial complex, see simplical complex for more detail. The regular simplex family is the first of three regular polytope families, labeled by Coxeter as αn, the two being the cross-polytope family, labeled as βn, and the hypercubes, labeled as γn. A fourth family, the infinite tessellation of hypercubes, he labeled as δn, an -simplex can be constructed as a join of an n-simplex and a point. An -simplex can be constructed as a join of an m-simplex, the two simplices are oriented to be completely normal from each other, with translation in a direction orthogonal to both of them. A 1-simplex is a joint of two points, ∨ =2, a general 2-simplex is the join of 3 points, ∨∨. An isosceles triangle is the join of a 1-simplex and a point, a general 3-simplex is the join of 4 points, ∨∨∨. A 3-simplex with mirror symmetry can be expressed as the join of an edge and 2 points, a 3-simplex with triangular symmetry can be expressed as the join of an equilateral triangle and 1 point,3. ∨ or ∨

7.
4-polytope
–
In geometry, a 4-polytope is a four-dimensional polytope. It is a connected and closed figure, composed of lower-dimensional polytopal elements, vertices, edges, faces, each face is shared by exactly two cells. The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron, topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space, similarly the 3D cube is related to the infinite 2D square tiling. Convex 4-polytopes can be cut and unfolded as nets in 3-space, a 4-polytope is a closed four-dimensional figure. It comprises vertices, edges, faces and cells, a cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i. e. it is not a compound, the most familiar 4-polytope is the tesseract or hypercube, the 4D analogue of the cube. 4-polytopes cannot be seen in space due to their extra dimension. Several techniques are used to help visualise them, Orthogonal projection Orthogonal projections can be used to show various symmetry orientations of a 4-polytope. They can be drawn in 2D as vertex-edge graphs, and can be shown in 3D with solid faces as visible projective envelopes. Perspective projection Just as a 3D shape can be projected onto a flat sheet, sectioning Just as a slice through a polyhedron reveals a cut surface, so a slice through a 4-polytope reveals a cut hypersurface in three dimensions. A sequence of sections can be used to build up an understanding of the overall shape. The extra dimension can be equated with time to produce an animation of these cross sections. The topology of any given 4-polytope is defined by its Betti numbers, the value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, and is zero for all 4-polytopes, whatever their underlying topology. This inadequacy of the Euler characteristic to distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal 4-polytopes, like all polytopes, 4-polytopes may be classified based on properties like convexity and symmetry. Self-intersecting 4-polytopes are also known as star 4-polytopes, from analogy with the shapes of the non-convex star polygons. A 4-polytope is regular if it is transitive on its flags and this means that its cells are all congruent regular polyhedra, and similarly its vertex figures are congruent and of another kind of regular polyhedron

8.
5-orthoplex
–
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices,40 edges,80 triangle faces,80 tetrahedron cells,32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol, and the second with alternately labeled facets and it is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube, pentacross, derived from combining the family name cross polytope with pente for five in Greek. Triacontaditeron - as a 32-facetted 5-polytope and this polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D, 5D uniform polytopes x3o3o3o4o - tac. Archived from the original on 4 February 2007, Polytopes of Various Dimensions Multi-dimensional Glossary

9.
Cantellated 5-cell
–
In four-dimensional geometry, a cantellated 5-cell is a convex uniform 4-polytope, being a cantellation of the regular 5-cell. There are 2 unique degrees of runcinations of the 5-cell including with permutations truncations, the cantellated 5-cell or small rhombated pentachroron is a uniform 4-polytope. It has 30 vertices,90 edges,80 faces, and 20 cells, the cells are 5 cuboctahedra,5 octahedra, and 10 triangular prisms. Each vertex is surrounded by 2 cuboctahedra,2 triangular prisms, and 1 octahedron, the cantitruncated 5-cell or great rhombated pentachoron is a uniform 4-polytope. It is composed of 60 vertices,120 edges,80 faces, the cells are,5 truncated octahedra,10 triangular prisms, and 5 truncated tetrahedra. Each vertex is surrounded by 2 truncated octahedra, one triangular prism and these polytopes are art of a set of 9 Uniform 4-polytopes constructed from the Coxeter group. Coxeter, Regular Polytopes, 3rd Edition, Dover New York,1973 Kaleidoscopes, Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication,1995, ISBN 978-0-471-01003-6 H. S. M, Coxeter, Regular and Semi Regular Polytopes I, H. S. M. Coxeter, Regular and Semi-Regular Polytopes II, H. S. M, Coxeter, Regular and Semi-Regular Polytopes III, Norman Johnson Uniform Polytopes, Manuscript N. W. Johnson, The Theory of Uniform Polytopes and Honeycombs, Ph. D.1, convex uniform polychora based on the pentachoron - Model 4,7, George Olshevsky. X3o3x3o - srip, x3x3x3o - grip

10.
Complex polytope
–
In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A complex polytope may be understood as a collection of points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes. Precise definitions exist only for the regular polytopes, which are configurations. The regular complex polytopes have been characterized, and can be described using a symbolic notation developed by Coxeter. Some complex polytopes which are not fully regular have also been described, the complex line C1 has one dimension with real coordinates and another with imaginary coordinates. Applying real coordinates to both dimensions is said to give it two dimensions over the real numbers, a real plane, with the imaginary axis labelled as such, is called an Argand diagram. Because of this it is called the complex plane. Complex 2-space is thus a four-dimensional space over the reals, a complex n-polytope in complex n-space is the analogue of a real n-polytope in real n-space. There is no natural complex analogue of the ordering of points on a real line, because of this a complex polytope cannot be seen as a contiguous surface and it does not bound an interior in the way that a real polytope does. In the case of polytopes, a precise definition can be made by using the notion of symmetry. For any regular polytope the symmetry group acts transitively on the flags, thus, by definition, regular complex polytopes are configurations in complex unitary space. The regular complex polytopes were discovered by Shephard, and the theory was developed by Coxeter. A complex polytope exists in the space of equivalent dimension. For example, the vertices of a polygon are points in the complex plane C2. Thus, an edge can be given a system consisting of a single complex number. In a regular polytope the vertices incident on the edge are arranged symmetrically about their centroid. So we may assume that the vertices on the edge satisfy the equation x p −1 =0 where p is the number of incident vertices. Thus, in the Argand diagram of the edge, the points lie at the vertices of a regular polygon centered on the origin