1.
Disdyakis dodecahedron
–
In geometry, a disdyakis dodecahedron, or hexakis octahedron or kisrhombic dodecahedron), is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons, more formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. Its collective edges represent the reflection planes of the symmetry and it can also be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron. Seen in stereographic projection the edges of the dodecahedron form 9 circles in the plane. Between a polyhedron and its dual, vertices and faces are swapped in positions, the disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron. It is a polyhedra in a sequence defined by the face configuration V4.6. 2n, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors. Each face on these domains also corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. First stellation of rhombic dodecahedron Disdyakis triacontahedron Kisrhombille tiling Great rhombihexacron—A uniform dual polyhedron with the surface topology Williams. The Geometrical Foundation of Natural Structure, A Source Book of Design, the Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Eric W. Weisstein, Disdyakis dodecahedron at MathWorld

2.
Truncated cuboctahedron
–
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces,8 regular hexagonal faces,6 regular octagonal faces,48 vertices and 72 edges, since each of its faces has point symmetry, the truncated cuboctahedron is a zonohedron. If you truncate a cuboctahedron by cutting the corners off, you do not get this uniform figure, however, the resulting figure is topologically equivalent to a truncated cuboctahedron and can always be deformed until the faces are regular. The alternative name great rhombicuboctahedron refers to the fact that the 12 square faces lie in the planes as the 12 faces of the rhombic dodecahedron which is dual to the cuboctahedron. One unfortunate point of confusion, There is a uniform polyhedron by the same name. See nonconvex great rhombicuboctahedron.7551724 a 2 V = a 3 ≈41.7989899 a 3, many other lower symmetry toroids can also be constructed by removing a subset of these dissected components. For example, removing half of the triangular cupolas creates a genus 3 torus, There is only one uniform coloring of the faces of this polyhedron, one color for each face type. A 2-uniform coloring, with symmetry, exists with alternately colored hexagons. The truncated cuboctahedron can also be represented as a spherical tiling and this projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane, the truncated cuboctahedron is one of a family of uniform polyhedra related to the cube and regular octahedron. This polyhedron can be considered a member of a sequence of patterns with vertex configuration. For p <6, the members of the sequence are omnitruncated polyhedra, for p <6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling. In the mathematical field of theory, a truncated cuboctahedral graph is the graph of vertices and edges of the truncated cuboctahedron. It has 48 vertices and 72 edges, and is a zero-symmetric and cubic Archimedean graph, cube Cuboctahedron Octahedron Truncated icosidodecahedron Truncated octahedron – truncated tetratetrahedron Cromwell, P. Polyhedra. Eric W. Weisstein, Great rhombicuboctahedron at MathWorld, 3D convex uniform polyhedra x3x4x - girco