1.
Small stellated dodecahedron
–
In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 pentagrammic faces, with five meeting at each vertex. It shares the vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron and it is the second of four stellations of the dodecahedron. It is central to two lithographs by M. C and its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron, compound of small stellated dodecahedron and great dodecahedron Small stellated dodecahedron programing Wenninger, Magnus. Weber, Matthias, Keplers small stellated dodecahedron as a Riemann surface,220, 167–182 Eric W. Weisstein, Small stellated dodecahedron at MathWorld

2.
Truncated icosahedron
–
In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose faces are two or more types of regular polygons. It has 12 regular pentagonal faces,20 regular hexagonal faces,60 vertices and 90 edges and it is the Goldberg polyhedron GPV or 1,1, containing pentagonal and hexagonal faces. This geometry is associated with footballs typically patterned with white hexagons, geodesic domes such as those whose architecture Buckminster Fuller pioneered are often based on this structure. It also corresponds to the geometry of the fullerene C60 molecule and it is used in the cell-transitive hyperbolic space-filling tessellation, the bitruncated order-5 dodecahedral honeycomb. This polyhedron can be constructed from an icosahedron with the 12 vertices truncated such that one third of each edge is cut off at each of both ends and this creates 12 new pentagon faces, and leaves the original 20 triangle faces as regular hexagons. Thus the length of the edges is one third of that of the original edges, cartesian coordinates for the vertices of a truncated icosahedron centered at the origin are all even permutations of, where φ =1 + √5/2 is the golden mean. Using φ2 = φ +1 one verifies that all vertices are on a sphere, centered at the origin, with the radius equal to √9φ +10. Permutations, X axis Y axis Z axis The truncated icosahedron has five special orthogonal projections, centered, on a vertex, the last two correspond to the A2 and H2 Coxeter planes. The truncated icosahedron can also be represented as a spherical tiling and this projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane and this result is easy to get by using one of the three orthogonal golden rectangles drawn into the original icosahedron as the starting point for our considerations. The angle between the segments joining the center and the vertices connected by shared edge is approximately 23. 281446°. The area A and the volume V of the truncated icosahedron of edge length a are, with unit edges, the surface area is 21 for the pentagons and 52 for the hexagons, together 73. The truncated icosahedron easily demonstrates the Euler characteristic,32 +60 −90 =2, the balls used in association football and team handball are perhaps the best-known example of a spherical polyhedron analog to the truncated icosahedron, found in everyday life. The ball comprises the same pattern of regular pentagons and regular hexagons, but it is more due to the pressure of the air inside. This ball type was introduced to the World Cup in 1970, geodesic domes are typically based on triangular facetings of this geometry with example structures found across the world, popularized by Buckminster Fuller. A variation of the icosahedron was used as the basis of the wheels used by the Pontiac Motor Division between 1971 and 1976 on its Trans Am and Grand Prix. This shape was also the configuration of the used for focusing the explosive shock waves of the detonators in both the gadget and Fat Man atomic bombs. The truncated icosahedron can also be described as a model of the Buckminsterfullerene, or buckyball, molecule, an allotrope of elemental carbon, discovered in 1985

3.
Great dodecahedron
–
In geometry, the great dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol and Coxeter–Dynkin diagram of. It is one of four regular polyhedra. It is composed of 12 pentagonal faces, with five meeting at each vertex. It shares the same arrangement as the convex regular icosahedron. If the great dodecahedron is considered as a properly intersected surface geometry, the excavated dodecahedron can be seen as the same process applied to a regular dodecahedron. A truncation process applied to the great dodecahedron produces a series of uniform polyhedra. Truncating edges down to points produces the dodecadodecahedron as a great dodecahedron. The process completes as a birectification, reducing the original faces down to points and this shape was the basis for the Rubiks Cube-like Alexanders Star puzzle. The great dodecahedron provides an easy mnemonic for the binary Golay code Compound of small stellated dodecahedron and great dodecahedron Eric W. Weisstein, uniform polyhedra and duals Metal sculpture of Great Dodecahedron

4.
Uniform star polyhedron
–
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting, each polyhedron can contain either star polygon faces, star polygon vertex figures or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra,5 quasiregular ones, there are also two infinite sets of uniform star prisms and uniform star antiprisms. The nonconvex forms are constructed from Schwarz triangles, all the uniform polyhedra are listed below by their symmetry groups and subgrouped by their vertex arrangements. Regular polyhedra are labeled by their Schläfli symbol, other nonregular uniform polyhedra are listed with their vertex configuration or their Uniform polyhedron index U. Note, For nonconvex forms below an additional descriptor Nonuniform is used when the convex hull vertex arrangement has same topology as one of these, for example an nonuniform cantellated form may have rectangles created in place of the edges rather than squares. There is one form, the tetrahemihexahedron which has tetrahedral symmetry. There are two Schwarz triangles that generate unique nonconvex uniform polyhedra, one triangle, and one general triangle. The general triangle generates the octahemioctahedron which is given further on with its octahedral symmetry. There are 8 convex forms, and 10 nonconvex forms with octahedral symmetry, there are four Schwarz triangles that generate nonconvex forms, two right triangles, and, and two general triangles. There are 8 convex forms and 46 nonconvex forms with icosahedral symmetry, some of the nonconvex snub forms have reflective vertex symmetry. Coxeter identified a number of star polyhedra by the Wythoff construction method. It is counted as a uniform polyhedron rather than a uniform polyhedron because of its double edges. Star polygon List of uniform polyhedra List of uniform polyhedra by Schwarz triangle Coxeter, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, a proof of the completeness on the list of elementary homogeneous polyhedra, Ukrainskiui Geometricheskiui Sbornik, 139–156, MR0326550 Skilling, J. The complete set of polyhedra, Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences,278, 111–135, doi,10. 1098/rsta.1975.0022, ISSN 0080-4614, JSTOR74475, MR0365333 HarEl, zvi Har’El, Kaleido software, Images, dual images Mäder, R. E. Messer, Peter W. Closed-Form Expressions for Uniform Polyhedra and Their Duals

5.
Dodecadodecahedron
–
In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the small stellated dodecahedron and the great dodecahedron and it was discovered independently by Hess, Badoureau and Pitsch. It has four Wythoff constructions between four Schwarz triangle families,2 |5 5/2,2 |5 5/3,2 | 5/2 5/4,2 | 5/3 5/4, but represent identical results. Similarly it can be given four extended Schläfli symbols, r, r, r, and r or as Coxeter-Dynkin diagrams, a shape with the same exterior appearance as the dodecadodecahedron can be constructed by folding up these nets,12 pentagrams and 20 rhombic clusters are necessary. However, this replaces the crossing pentagonal faces of the dodecadodecahedron with non-crossing sets of rhombi. Its convex hull is the icosidodecahedron and it also shares its edge arrangement with the small dodecahemicosahedron, and with the great dodecahemicosahedron. This polyhedron can be considered a great dodecahedron. It is topologically equivalent to a quotient space of the hyperbolic order-4 pentagonal tiling, the medial rhombic triacontahedron is a nonconvex isohedral polyhedron. It is the dual of the dodecadodecahedron and it has 30 intersecting rhombic faces. It can also be called the small stellated triacontahedron, the medial rhombic triacontahedron is a stellation of the rhombic triacontahedron, which is the dual of the icosidodecahedron, the convex hull of the dodecadodecahedron. It is topologically equivalent to a quotient space of the hyperbolic order-5 square tiling, list of uniform polyhedra Badoureau, Mémoire sur les figures isoscèles, journal de l´École Polytechnique,49, 47–172 Hess, Edmund, Vier archimedeische Polyeder höherer Art, Cassel. Weisstein, Eric W. Medial Rhombic Triacontahedron

6.
Wythoff symbol
–
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra, a Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators, with a slight extension, Wythoffs symbol can be applied to all uniform polyhedra. However, the methods do not lead to all uniform tilings in euclidean or hyperbolic space. In three dimensions, Wythoffs construction begins by choosing a point on the triangle. If the distance of this point from each of the sides is non-zero, a perpendicular line is then dropped between the generator point and every face that it does not lie on. The three numbers in Wythoffs symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, the triangle is also represented with the same numbers, written. In this notation the mirrors are labeled by the reflection-order of the opposite vertex, the p, q, r values are listed before the bar if the corresponding mirror is active. The one impossible symbol | p q r implies the point is on all mirrors. This unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, the resulting figure has rotational symmetry only. The generator point can either be on or off each mirror and this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. A node is circled if the point is not on the mirror. There are seven generator points with each set of p, q, r, | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isnt Wythoff-constructible, There are 4 symmetry classes of reflection on the sphere, and two in the Euclidean plane. A few of the many such patterns in the hyperbolic plane are also listed. The list of Schwarz triangles includes rational numbers, and determine the set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a domain, colored by even. Selected tilings created by the Wythoff construction are given below, for a more complete list, including cases where r ≠2, see List of uniform polyhedra by Schwarz triangle

7.
Great dodecicosidodecahedron
–
In geometry, the great dodecicosidodecahedron is a nonconvex uniform polyhedron, indexed as U61. It shares its vertex arrangement with the great dodecahedron and the uniform compounds of 6 or 12 pentagonal prisms. It additionally shares its edge arrangement with the nonconvex great rhombicosidodecahedron, list of uniform polyhedra Weisstein, Eric W