1.
Disdyakis dodecahedron
–
In geometry, a disdyakis dodecahedron, or hexakis octahedron or kisrhombic dodecahedron), is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons, more formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. Its collective edges represent the reflection planes of the symmetry and it can also be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron. Seen in stereographic projection the edges of the dodecahedron form 9 circles in the plane. Between a polyhedron and its dual, vertices and faces are swapped in positions, the disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron. It is a polyhedra in a sequence defined by the face configuration V4.6. 2n, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors. Each face on these domains also corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. First stellation of rhombic dodecahedron Disdyakis triacontahedron Kisrhombille tiling Great rhombihexacron—A uniform dual polyhedron with the surface topology Williams. The Geometrical Foundation of Natural Structure, A Source Book of Design, the Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Eric W. Weisstein, Disdyakis dodecahedron at MathWorld

2.
Disdyakis triacontahedron
–
In geometry, a disdyakis triacontahedron, hexakis icosahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is uniform but with irregular face polygons. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron and it also has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place. If the bipyramids and the trapezohedra are excluded, the disdyakis triacontahedron has the most faces of any strictly convex polyhedron where every face of the polyhedron has the same shape. The edges of the polyhedron projected onto a sphere form 15 great circles, combining pairs of light and dark triangles define the fundamental domains of the nonreflective icosahedral symmetry. The edges of a compound of five octahedra also represent the 10 mirror planes of icosahedral symmetry and this unsolved problem, often called the big chop problem, currently has no satisfactory mechanism. It is the most significant unsolved problem in mechanical puzzles and this shape was used to create d120 dice using 3D printing. More recently, the Dice Lab has used the Disdyakis triacontahedron to mass market an injection moulded 120 sided die. It is claimed that the d120 is the largest number of faces on a fair dice. It is topologically related to a sequence defined by the face configuration V4.6. 2n. With an even number of faces at every vertex, these polyhedra, each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. This is *n32 in orbifold notation, and in Coxeter notation, the Geometrical Foundation of Natural Structure, A Source Book of Design. Disdyakis triacontahedron – Interactive Polyhedron Model

3.
Orbifold notation
–
Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, and their analogues on the hyperbolic plane. e. All translations which occur are assumed to form a subgroup of the group symmetries being described. The symbol ×, which is called a miracle and represents a topological crosscap where a pattern repeats as an image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space, a string not written in boldface represents a group of symmetries of the Euclidean plane, which is assumed to contain two independent translations. By abuse of language, we say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way, the exceptional symbol o indicates that there are precisely two linearly independent translations. An orbifold symbol is called if it is not one of the following, p, pq, *p, *pq, for p, q>=2. An object is chiral if its symmetry group contains no reflections, the corresponding orbifold is orientable in the chiral case and non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol, as follows. Each feature has a value, n without or before an asterisk counts as n −1 n n after an asterisk counts as n −12 n asterisk, subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the values is 2, the order is infinite. Indeed, Conways Magic Theorem indicates that the 17 wallpaper groups are exactly those with the sum of the feature values equal to 2, otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic, 1* and *1122 and 221 *22 and *221 2* and this is because 1-fold rotation is the empty rotation. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a dimension to the object which does not add or spoil symmetry. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point, thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object, on Three-dimensional Orbifolds and Space Groups. Contributions to Algebra and Geometry,42, 475-507,2001, J. H. Conway, D. H. Huson. The Orbifold Notation for Two-Dimensional Groups, structural Chemistry,13, 247-257, August 2002

4.
3-7 kisrhombille
–
In geometry, the 3-7 kisrhombille tiling is a semiregular dual tiling of the hyperbolic plane. It is constructed by congruent right triangles with 4,6, the image shows a Poincaré disk model projection of the hyperbolic plane. It is labeled V4.6.14 because each right triangle face has three types of vertices, one with 4 triangles, one with 6 triangles, and one with 14 triangles. It is the tessellation of the truncated triheptagonal tiling which has one square and one heptagon. The name 3-7 kisrhombille is given by Conway, seeing it as a 3-7 rhombic tiling, divided by a kis operator, adding a point to each rhombus. There are no mirror removal subgroups of, the only small index subgroup is the alternation, +. Three isohedral tilings can be constructed from this tiling by combining triangles, It is topologically related to a polyhedra sequence, see also the uniform tilings of the hyperbolic plane with symmetry. The kisrhombille tilings can be seen as from the sequence of rhombille tilings, starting with the cube, just as the triangle group is a quotient of the modular group, the associated tiling is the quotient of the modular tiling, as depicted in the video at right. Hexakis triangular tiling Tilings of regular polygons List of uniform tilings Uniform tilings in hyperbolic plane

5.
Hexagonal bipyramid
–
A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces,8 vertices and 18 edges, the 12 faces are identical isosceles triangles. Although it is face-transitive, it is not a Platonic solid because some vertices have four faces meeting and others have six faces and it is one of an infinite set of bipyramids. Having twelve faces, it is a type of dodecahedron, although that name is associated with the regular polyhedral form with pentagonal faces. The term dodecadeltahedron is sometimes used to distinguish the bipyramid from the Platonic solid, the hexagonal bipyramid has a plane of symmetry where the bases of the two pyramids are joined. This plane is a regular hexagon, there are also six planes of symmetry crossing through the two apices. These planes are rhombic and lie at 30° angles to each other, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors. Each face on these domains also corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. Hexagonal trapezohedron A similar 12-sided polyhedron with a twist and kite faces, snub disphenoid Another 12-sided polyhedron with 2-fold symmetry and only triangular faces. Archived from the original on 4 February 2007, virtual Reality Polyhedra The Encyclopedia of Polyhedra VRML model hexagonal dipyramid Conway Notation for Polyhedra Try, dP6

6.
Hexagonal prism
–
In geometry, the hexagonal prism is a prism with hexagonal base. This polyhedron has 8 faces,18 edges, and 12 vertices, since it has eight faces, it is an octahedron. However, the octahedron is primarily used to refer to the regular octahedron. Because of the ambiguity of the octahedron and the dissimilarity of the various eight-sided figures. Before sharpening, many take the shape of a long hexagonal prism. It can be seen as a truncated hexagonal hosohedron, represented by Schläfli symbol t, alternately it can be seen as the Cartesian product of a regular hexagon and a line segment, and represented by the product ×. The dual of a prism is a hexagonal bipyramid. The symmetry group of a hexagonal prism is D6h of order 24. The rotation group is D6 of order 12, for p <6, the members of the sequence are omnitruncated polyhedra, shown below as spherical tilings. For p >6, they are tilings of the hyperbolic plane, Uniform Honeycombs in 3-Space VRML models The Uniform Polyhedra Virtual Reality Polyhedra The Encyclopedia of Polyhedra Prisms and antiprisms Weisstein, Eric W. Hexagonal prism. Hexagonal Prism Interactive Model -- works in your web browser

7.
Tetrakis hexahedron
–
In geometry, a tetrakis hexahedron is a Catalan solid. Its dual is the octahedron, an Archimedean solid. It also can be called a disdyakis hexahedron as the dual of an omnitruncated tetrahedron, the tetrakis hexahedron, dual of the truncated octahedron has 3 symmetry positions, two located on vertices and one mid-edge. Naturally occurring formations of tetrahexahedra are observed in copper and fluorite systems, polyhedral dice shaped like the tetrakis hexahedron are occasionally used by gamers. The tetrakis hexahedron appears as one of the simplest examples in building theory, consider the Riemannian symmetric space associated to the group SL4. Its Tits boundary has the structure of a building whose apartments are 2-dimensional spheres. The partition of this sphere into spherical simplices can be obtained by taking the radial projection of a tetrakis hexahedron, with Td, tetrahedral symmetry, the triangular faces represent the 24 fundamental domains of tetrahedral symmetry. This polyhedron can be constructed from 6 great circles on a sphere and it can also be seen by a cube with its square faces triangulated by their vertices and face centers and a tetrahedron with its faces divided by vertices, mid-edges, and a central point. The edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The 6 circles can be grouped into 3 sets of 2 pairs of orthogonal circles and these edges can also be seen as a compound of 3 orthogonal square hosohedrons. If we denote the length of the base cube by a. The inclination of each face of the pyramid versus the cube face is arctan. One edge of the triangles has length a, the other two have length 3a/4, which follows by applying the Pythagorean theorem to height and base length. This yields an altitude of √5a/4 in the triangle and its area is √5a/8, and the internal angles are arccos and the complementary 180° −2 arccos. The volume of the pyramid is a3/12, so the volume of the six pyramids. It can be seen as a cube with square pyramids covering each square face and it is a polyhedra in a sequence defined by the face configuration V4.6. 2n. With an even number of faces at every vertex, these polyhedra, each face on these domains also corresponds to the fundamental domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. Disdyakis triacontahedron Disdyakis dodecahedron Kisrhombille tiling Compound of three octahedra Deltoidal icositetrahedron, another 24-face Catalan solid, the Geometrical Foundation of Natural Structure, A Source Book of Design

8.
Truncated cuboctahedron
–
In geometry, the truncated cuboctahedron is an Archimedean solid, named by Kepler as a truncation of a cuboctahedron. It has 12 square faces,8 regular hexagonal faces,6 regular octagonal faces,48 vertices and 72 edges, since each of its faces has point symmetry, the truncated cuboctahedron is a zonohedron. If you truncate a cuboctahedron by cutting the corners off, you do not get this uniform figure, however, the resulting figure is topologically equivalent to a truncated cuboctahedron and can always be deformed until the faces are regular. The alternative name great rhombicuboctahedron refers to the fact that the 12 square faces lie in the planes as the 12 faces of the rhombic dodecahedron which is dual to the cuboctahedron. One unfortunate point of confusion, There is a uniform polyhedron by the same name. See nonconvex great rhombicuboctahedron.7551724 a 2 V = a 3 ≈41.7989899 a 3, many other lower symmetry toroids can also be constructed by removing a subset of these dissected components. For example, removing half of the triangular cupolas creates a genus 3 torus, There is only one uniform coloring of the faces of this polyhedron, one color for each face type. A 2-uniform coloring, with symmetry, exists with alternately colored hexagons. The truncated cuboctahedron can also be represented as a spherical tiling and this projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane, the truncated cuboctahedron is one of a family of uniform polyhedra related to the cube and regular octahedron. This polyhedron can be considered a member of a sequence of patterns with vertex configuration. For p <6, the members of the sequence are omnitruncated polyhedra, for p <6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling. In the mathematical field of theory, a truncated cuboctahedral graph is the graph of vertices and edges of the truncated cuboctahedron. It has 48 vertices and 72 edges, and is a zero-symmetric and cubic Archimedean graph, cube Cuboctahedron Octahedron Truncated icosidodecahedron Truncated octahedron – truncated tetratetrahedron Cromwell, P. Polyhedra. Eric W. Weisstein, Great rhombicuboctahedron at MathWorld, 3D convex uniform polyhedra x3x4x - girco