1.
Alternation (geometry)
–
In geometry, an alternation or partial truncation, is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices. Coxeter labels an alternation by a prefixed by an h, standing for hemi or half, because alternation reduce all polygon faces to half as many sides, it can only be applied for polytopes with all even-sided faces. An alternated square face becomes a digon, and being degenerate, is reduced to a single edge. More generally any vertex-uniform polyhedron or tiling with a configuration consisting of all even-numbered elements can be alternated. For example, the alternation a vertex figure with 2a. 2b. 2c is a.3. b.3. c.3 where the three is the number of elements in this vertex figure. A special case is square faces whose order divide in half into degenerate digons, a snub can be seen as an alternation of a truncated regular or truncated quasiregular polyhedron. In general a polyhedron can be snubbed if its truncation has only even-sided faces, all truncated rectified polyhedra can be snubbed, not just from regular polyhedra. The snub square antiprism is an example of a general snub and this alternation operation applies to higher-dimensional polytopes and honeycombs as well, but in general most of the results of this operation will not be uniform. The voids created by the vertices will not in general create uniform facets. Examples, Honeycombs An alternated cubic honeycomb is the tetrahedral-octahedral honeycomb, an alternated hexagonal prismatic honeycomb is the gyrated alternated cubic honeycomb. 4-polytope An alternated truncated 24-cell is the snub 24-cell, 4-honeycombs, An alternated truncated 24-cell honeycomb is the snub 24-cell honeycomb. A hypercube can always be alternated into a uniform demihypercube, cube → Tetrahedron → Tesseract → 16-cell → Penteract → demipenteract Hexeract → demihexeract. Coxeter also used the operator a, which contains both halves, so retains the original symmetry, for even-sided regular polyhedra, a represents a compound polyhedron with two opposite copies of h. For odd-sided, greater than 3, regular polyhedra a, becomes a star polyhedron, Norman Johnson extended the use of the altered operator a, b for blended, and c for converted, as, and respectively. The compound polyhedron, stellated octahedron can be represented by a, the star-polyhedron, small ditrigonal icosidodecahedron, can be represented by a, and. Here all the pentagons have been alternated into pentagrams, and triangles have been inserted to take up the free edges. A similar operation can truncate alternate vertices, rather than just removing them, below is a set of polyhedra that can be generated from the Catalan solids. These have two types of vertices which can be alternately truncated, truncating the higher order vertices and both vertex types produce these forms, Conway polyhedral notation Wythoff construction Coxeter, H. S. M

2.
Apollonian network
–
In combinatorial mathematics, an Apollonian network is an undirected graph formed by a process of recursively subdividing a triangle into three smaller triangles. Apollonian networks may equivalently be defined as the planar 3-trees, the maximal planar graphs, the uniquely 4-colorable planar graphs. They are named after Apollonius of Perga, who studied a related circle-packing construction, in this way, the triangle containing the new vertex is subdivided into three smaller triangles, which may in turn be subdivided in the same way. The complete graphs on three and four vertices, K3 and K4, are both Apollonian networks, K3 is formed by starting with a triangle and not performing any subdivisions, while K4 is formed by making a single subdivision before stopping. The Goldner–Harary graph is an Apollonian network that forms the smallest non-Hamiltonian maximal planar graph, another more complicated Apollonian network was used by Nishizeki to provide an example of a 1-tough non-Hamiltonian maximal planar graph. As well as being defined by recursive subdivision of triangles, the Apollonian networks have several other equivalent mathematical characterizations and they are the chordal maximal planar graphs, the chordal polyhedral graphs, and the planar 3-trees. They are the uniquely 4-colorable planar graphs, and the graphs with a unique Schnyder wood decomposition into three trees. They are the planar graphs with treewidth three, a class of graphs that can be characterized by their forbidden minors or by their reducability under Y-Δ transforms. They are the planar graphs with degeneracy three. This forms an alternative characterization of the Apollonian networks, they are exactly the maximal planar graphs or equivalently the chordal polyhedral graphs. In an Apollonian network, every clique is a complete graph on four vertices, formed by choosing any vertex. Every minimal clique separator is one of the subdivided triangles, a chordal graph in which all maximal cliques and all minimal clique separators have the same size is a k-tree, and Apollonian networks are examples of 3-trees. Not every 3-tree is planar, but the planar 3-trees are exactly the Apollonian networks, every Apollonian network is also a uniquely 4-colorable graph. It is more difficult to prove, but also true, that every uniquely 4-colorable planar graph is an Apollonian network, therefore, Apollonian networks may also be characterized as the uniquely 4-colorable planar graphs. Apollonian networks also provide examples of planar graphs having as few k-colorings as possible for k >4, however, the planar partial 3-trees, subgraphs of Apollonian networks, are minor-closed. Therefore, according to the Robertson–Seymour theorem, they can be characterized by a number of forbidden minors. The Apollonian graphs are the graphs that do not have any of these four graphs as a minor. In every subgraph of an Apollonian network, the most recently added vertex has degree at most three, so Apollonian networks have degeneracy three

3.
Catalan solid
–
In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. The Catalan solids are named for the Belgian mathematician, Eugène Catalan, the Catalan solids are all convex. They are face-transitive but not vertex-transitive and this is because the dual Archimedean solids are vertex-transitive and not face-transitive. Note that unlike Platonic solids and Archimedean solids, the faces of Catalan solids are not regular polygons, however, the vertex figures of Catalan solids are regular, and they have constant dihedral angles. Being face-transitive, Catalan solids are isohedra, additionally, two of the Catalan solids are edge-transitive, the rhombic dodecahedron and the rhombic triacontahedron. These are the duals of the two quasi-regular Archimedean solids, just as prisms and antiprisms are generally not considered Archimedean solids, so bipyramids and trapezohedra are generally not considered Catalan solids, despite being face-transitive. Two of the Catalan solids are chiral, the pentagonal icositetrahedron and these each come in two enantiomorphs. Not counting the enantiomorphs, bipyramids, and trapezohedra, there are a total of 13 Catalan solids, the Catalan solids, along with their dual Archimedean solids, can be grouped by their symmetry, tetrahedral, octahedral, and icosahedral. There are 6 forms per symmetry, while the self-symmetric tetrahedral group only has three forms and two of those are duplicated with octahedral symmetry. J. lÉcole Polytechnique 41, 1-71,1865, alan Holden Shapes, Space, and Symmetry. Wenninger, Magnus, Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR730208 Williams, the Geometrical Foundation of Natural Structure, A Source Book of Design. California, University of California Press Berkeley, chapter 4, Duals of the Archimedean polyhedra, prisma and antiprisms Weisstein, Eric W. Catalan Solids. Archived from the original on 4 February 2007, Archimedean duals – at Virtual Reality Polyhedra Interactive Catalan Solid in Java

4.
Conway polyhedron notation
–
In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations. Conway and Hart extended the idea of using operators, like truncation defined by Kepler, the basic descriptive operators can generate all the Archimedean solids and Catalan solids from regular seeds. For example tC represents a cube, and taC, parsed as t, is a truncated cuboctahedron. The simplest operator dual swaps vertex and face elements, like a cube is an octahedron. Applied in a series, these allow many higher order polyhedra to be generated. A resulting polyhedron will have a fixed topology, while exact geometry is not constrained, the seed polyhedra are the Platonic solids, represented by the first letter of their name, the prisms for n-gonal forms, antiprisms, cupolae and pyramids. Any polyhedron can serve as a seed, as long as the operations can be executed on it, for example regular-faced Johnson solids can be referenced as Jn, for n=1.92. In general, it is difficult to predict the appearance of the composite of two or more operations from a given seed polyhedron. For instance ambo applied twice becomes the same as the operation, aa=e, while a truncation after ambo produces bevel. There has been no general theory describing what polyhedra can be generated in by any set of operators, instead all results have been discovered empirically. Elements are given from the seed to the new forms, assuming seed is a polyhedron, An example image is given for each operation. The basic operations are sufficient to generate the reflective uniform polyhedra, some basic operations can be made as composites of others. Special forms The kis operator has a variation, kn, which only adds pyramids to n-sided faces, the truncate operator has a variation, tn, which only truncates order-n vertices. The operators are applied like functions from right to left, for example, a cuboctahedron is an ambo cube, i. e. t = aC, and a truncated cuboctahedron is t = t = taC. Chirality operator r – reflect – makes the image of the seed. Alternately an overline can be used for picking the other chiral form, the operations are visualized here on cube seed examples, drawn on the surface of the cube, with blue faces that cross original edges, and pink faces that center at original vertices. The first row generates the Archimedean solids and the row the Catalan solids. Comparing each new polyhedron with the cube, each operation can be visually understood, the truncated icosahedron, tI or zD, which is Goldberg polyhedron G, creates more polyhedra which are neither vertex nor face-transitive

5.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors

6.
Cuboctahedron
–
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, as such, it is a quasiregular polyhedron, i. e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. Its dual polyhedron is the rhombic dodecahedron, the cuboctahedron was probably known to Plato, Herons Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name Dymaxion to this shape, used in a version of the Dymaxion map. He also called it the Vector Equilibrium and he called a cuboctahedron consisting of rigid struts connected by flexible vertices a jitterbug. With Oh symmetry, order 48, it is a cube or rectified octahedron With Td symmetry, order 24. With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are, the cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, and the two types of faces, triangular and square. The last two correspond to the B2 and A2 Coxeter planes, the skew projections show a square and hexagon passing through the center of the cuboctahedron. The cuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The cuboctahedrons 12 vertices can represent the vectors of the simple Lie group A3. With the addition of 6 vertices of the octahedron, these represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron, if these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created. The cuboctahedron can also be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point and this dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra. A cuboctahedron can be obtained by taking a cross section of a four-dimensional 16-cell. Its first stellation is the compound of a cube and its dual octahedron, the cuboctahedron is a rectified cube and also a rectified octahedron. It is also a cantellated tetrahedron, with this construction it is given the Wythoff symbol,33 |2

7.
Deltoidal icositetrahedron
–
In geometry, a deltoidal icositetrahedron is a Catalan solid which looks a bit like an overinflated cube. Its dual polyhedron is the rhombicuboctahedron, the short and long edges of each kite are in the ratio 1, ≈1,1.292893. The shape is called a trapezohedron in mineral contexts, although in solid geometry that name has another meaning. The deltoidal icositetrahedron has three positions, all centered on vertices, The great triakis octahedron is a stellation of the deltoidal icositetrahedron. The deltoidal icositetrahedron is topologically equivalent to a cube whose faces are divided in quadrants and it can also be projected onto a regular octahedron, with kite faces, or more general quadrilaterals with pyritohedral symmetry. In Conway polyhedron notation, they represent an ortho operation to a cube or octahedron, in crystallography a rotational variation is called a dyakis dodecahedron or diploid. The deltoidal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and this polyhedron is topologically related as a part of sequence of deltoidal polyhedra with face figure, and continues as tilings of the hyperbolic plane. These face-transitive figures have reflectional symmetry, deltoidal hexecontahedron Tetrakis hexahedron, another 24-face Catalan solid which looks a bit like an overinflated cube. The Haunter of the Dark, a story by H. P, lovecraft, whose plot involves this figure Williams, Robert. The Geometrical Foundation of Natural Structure, A Source Book of Design, deltoidal Icositetrahedron – Interactive Polyhedron model

8.
Disdyakis dodecahedron
–
In geometry, a disdyakis dodecahedron, or hexakis octahedron or kisrhombic dodecahedron), is a Catalan solid with 48 faces and the dual to the Archimedean truncated cuboctahedron. As such it is face-transitive but with irregular face polygons, more formally, the disdyakis dodecahedron is the Kleetope of the rhombic dodecahedron. Its collective edges represent the reflection planes of the symmetry and it can also be seen in the corner and mid-edge triangulation of the regular cube and octahedron, and rhombic dodecahedron. Seen in stereographic projection the edges of the dodecahedron form 9 circles in the plane. Between a polyhedron and its dual, vertices and faces are swapped in positions, the disdyakis dodecahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron. It is a polyhedra in a sequence defined by the face configuration V4.6. 2n, with an even number of faces at every vertex, these polyhedra and tilings can be shown by alternating two colors so all adjacent faces have different colors. Each face on these domains also corresponds to the domain of a symmetry group with order 2,3, n mirrors at each triangle face vertex. First stellation of rhombic dodecahedron Disdyakis triacontahedron Kisrhombille tiling Great rhombihexacron—A uniform dual polyhedron with the surface topology Williams. The Geometrical Foundation of Natural Structure, A Source Book of Design, the Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 Eric W. Weisstein, Disdyakis dodecahedron at MathWorld

9.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does