1.
Cube
–
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. The cube is the only regular hexahedron and is one of the five Platonic solids and it has 6 faces,12 edges, and 8 vertices. The cube is also a square parallelepiped, an equilateral cuboid and it is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations. The cube is dual to the octahedron and it has cubical or octahedral symmetry. The cube has four special orthogonal projections, centered, on a vertex, edges, face, the first and third correspond to the A2 and B2 Coxeter planes. The cube can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. In analytic geometry, a surface with center and edge length of 2a is the locus of all points such that max = a. For a cube of length a, As the volume of a cube is the third power of its sides a × a × a, third powers are called cubes, by analogy with squares. A cube has the largest volume among cuboids with a surface area. Also, a cube has the largest volume among cuboids with the same linear size. They were unable to solve this problem, and in 1837 Pierre Wantzel proved it to be impossible because the root of 2 is not a constructible number. The cube has three uniform colorings, named by the colors of the faces around each vertex,111,112,123. The cube has three classes of symmetry, which can be represented by coloring the faces. The highest octahedral symmetry Oh has all the faces the same color, the dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a symmetry, with sides alternating colors. Each symmetry form has a different Wythoff symbol, a cube has eleven nets, that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the color, one would need at least three colors
2.
Tesseract
–
In geometry, the tesseract is the four-dimensional analog of the cube, the tesseract is to the cube as the cube is to the square. Just as the surface of the consists of six square faces. The tesseract is one of the six convex regular 4-polytopes, the tesseract is also called an 8-cell, C8, octachoron, octahedroid, cubic prism, and tetracube. It is the four-dimensional hypercube, or 4-cube as a part of the family of hypercubes or measure polytopes. In this publication, as well as some of Hintons later work, the tesseract can be constructed in a number of ways. As a regular polytope with three cubes folded together around every edge, it has Schläfli symbol with hyperoctahedral symmetry of order 384, constructed as a 4D hyperprism made of two parallel cubes, it can be named as a composite Schläfli symbol ×, with symmetry order 96. As a 4-4 duoprism, a Cartesian product of two squares, it can be named by a composite Schläfli symbol ×, with symmetry order 64, as an orthotope it can be represented by composite Schläfli symbol × × × or 4, with symmetry order 16. Since each vertex of a tesseract is adjacent to four edges, the dual polytope of the tesseract is called the hexadecachoron, or 16-cell, with Schläfli symbol. The standard tesseract in Euclidean 4-space is given as the hull of the points. That is, it consists of the points, A tesseract is bounded by eight hyperplanes, each pair of non-parallel hyperplanes intersects to form 24 square faces in a tesseract. Three cubes and three squares intersect at each edge, there are four cubes, six squares, and four edges meeting at every vertex. All in all, it consists of 8 cubes,24 squares,32 edges, the construction of a hypercube can be imagined the following way, 1-dimensional, Two points A and B can be connected to a line, giving a new line segment AB. 2-dimensional, Two parallel line segments AB and CD can be connected to become a square, 3-dimensional, Two parallel squares ABCD and EFGH can be connected to become a cube, with the corners marked as ABCDEFGH. 4-dimensional, Two parallel cubes ABCDEFGH and IJKLMNOP can be connected to become a hypercube and it is possible to project tesseracts into three- or two-dimensional spaces, as projecting a cube is possible on a two-dimensional space. Projections on the 2D-plane become more instructive by rearranging the positions of the projected vertices, the scheme is similar to the construction of a cube from two squares, juxtapose two copies of the lower-dimensional cube and connect the corresponding vertices. Each edge of a tesseract is of the same length, the regular complex polytope 42, in C2 has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 42 has 16 vertices, and 8 4-edges and its symmetry is 42, order 32. It also has a lower construction, or 4×4, with symmetry 44
3.
Three-dimensional space
–
Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the meaning of the term dimension. In physics and mathematics, a sequence of n numbers can be understood as a location in n-dimensional space, when n =3, the set of all such locations is called three-dimensional Euclidean space. It is commonly represented by the symbol ℝ3 and this serves as a three-parameter model of the physical universe in which all known matter exists. However, this space is one example of a large variety of spaces in three dimensions called 3-manifolds. Furthermore, in case, these three values can be labeled by any combination of three chosen from the terms width, height, depth, and breadth. In mathematics, analytic geometry describes every point in space by means of three coordinates. Three coordinate axes are given, each perpendicular to the two at the origin, the point at which they cross. They are usually labeled x, y, and z, below are images of the above-mentioned systems. Two distinct points determine a line. Three distinct points are either collinear or determine a unique plane, four distinct points can either be collinear, coplanar or determine the entire space. Two distinct lines can intersect, be parallel or be skew. Two parallel lines, or two intersecting lines, lie in a plane, so skew lines are lines that do not meet. Two distinct planes can either meet in a line or are parallel. Three distinct planes, no pair of which are parallel, can meet in a common line. In the last case, the three lines of intersection of each pair of planes are mutually parallel, a line can lie in a given plane, intersect that plane in a unique point or be parallel to the plane. In the last case, there will be lines in the plane that are parallel to the given line, a hyperplane is a subspace of one dimension less than the dimension of the full space. The hyperplanes of a space are the two-dimensional subspaces, that is
4.
Joseph-Louis Lagrange
–
Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia or Giuseppe Ludovico De la Grange Tournier, was an Italian and French Enlightenment Era mathematician and astronomer. He made significant contributions to the fields of analysis, number theory, in 1787, at age 51, he moved from Berlin to Paris and became a member of the French Academy of Sciences. He remained in France until the end of his life, Lagrange was one of the creators of the calculus of variations, deriving the Euler–Lagrange equations for extrema of functionals. He also extended the method to take into account possible constraints and he proved that every natural number is a sum of four squares. His treatise Theorie des fonctions analytiques laid some of the foundations of group theory, in calculus, Lagrange developed a novel approach to interpolation and Taylor series. Born as Giuseppe Lodovico Lagrangia, Lagrange was of Italian and French descent and his mother was from the countryside of Turin. He was raised as a Roman Catholic, a career as a lawyer was planned out for Lagrange by his father, and certainly Lagrange seems to have accepted this willingly. He studied at the University of Turin and his subject was classical Latin. At first he had no enthusiasm for mathematics, finding Greek geometry rather dull. It was not until he was seventeen that he showed any taste for mathematics – his interest in the subject being first excited by a paper by Edmond Halley which he came across by accident. Alone and unaided he threw himself into mathematical studies, at the end of a years incessant toil he was already an accomplished mathematician, in that capacity, Lagrange was the first to teach calculus in an engineering school. In this Academy one of his students was François Daviet de Foncenex, Lagrange is one of the founders of the calculus of variations. Starting in 1754, he worked on the problem of tautochrone, Lagrange wrote several letters to Leonhard Euler between 1754 and 1756 describing his results. He outlined his δ-algorithm, leading to the Euler–Lagrange equations of variational calculus, Lagrange also applied his ideas to problems of classical mechanics, generalizing the results of Euler and Maupertuis. Euler was very impressed with Lagranges results, Lagrange published his method in two memoirs of the Turin Society in 1762 and 1773. Many of these are elaborate papers, the article concludes with a masterly discussion of echoes, beats, and compound sounds. Other articles in volume are on recurring series, probabilities. The next work he produced was in 1764 on the libration of the Moon, and an explanation as to why the face was always turned to the earth
5.
Bernhard Riemann
–
Georg Friedrich Bernhard Riemann was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, through his pioneering contributions to differential geometry, Bernhard Riemann laid the foundations of the mathematics of general relativity. Riemann was born on September 17,1826 in Breselenz, a village near Dannenberg in the Kingdom of Hanover in what is the Federal Republic of Germany today and his father, Friedrich Bernhard Riemann, was a poor Lutheran pastor in Breselenz who fought in the Napoleonic Wars. His mother, Charlotte Ebell, died before her children had reached adulthood, Riemann was the second of six children, shy and suffering from numerous nervous breakdowns. Riemann exhibited exceptional skills, such as calculation abilities, from an early age but suffered from timidity. During 1840, Riemann went to Hanover to live with his grandmother, after the death of his grandmother in 1842, he attended high school at the Johanneum Lüneburg. In high school, Riemann studied the Bible intensively, but he was distracted by mathematics. His teachers were amazed by his ability to perform complicated mathematical operations. In 1846, at the age of 19, he started studying philology and Christian theology in order to become a pastor and help with his familys finances. During the spring of 1846, his father, after gathering enough money, sent Riemann to the University of Göttingen, however, once there, he began studying mathematics under Carl Friedrich Gauss. Gauss recommended that Riemann give up his work and enter the mathematical field, after getting his fathers approval. During his time of study, Jacobi, Lejeune Dirichlet, Steiner and he stayed in Berlin for two years and returned to Göttingen in 1849. Riemann held his first lectures in 1854, which founded the field of Riemannian geometry, in 1857, there was an attempt to promote Riemann to extraordinary professor status at the University of Göttingen. Although this attempt failed, it did result in Riemann finally being granted a regular salary, in 1859, following Lejeune Dirichlets death, he was promoted to head the mathematics department at Göttingen. He was also the first to suggest using dimensions higher than three or four in order to describe physical reality. In 1862 he married Elise Koch and had a daughter, Riemann fled Göttingen when the armies of Hanover and Prussia clashed there in 1866. He died of tuberculosis during his journey to Italy in Selasca where he was buried in the cemetery in Biganzolo
6.
Charles Howard Hinton
–
Charles Howard Hinton was a British mathematician and writer of science fiction works titled Scientific Romances. He was interested in higher dimensions, particularly the fourth dimension and he is known for coining the word tesseract and for his work on methods of visualising the geometry of higher dimensions. Hinton taught at Cheltenham College while he studied at Balliol College, Oxford, from 1880 to 1886, he taught at Uppingham School in Rutland, where Howard Candler, a friend of Edwin Abbott Abbotts, also taught. Hinton also received his M. A. from Oxford in 1886, in 1880 Hinton married Mary Ellen, daughter of Mary Everest Boole and George Boole, the founder of mathematical logic. The couple had four children, George, Eric, William, in 1883 he went through a marriage ceremony with Maud Florence, by whom he had had twin children, under the assumed identity of John Weldon. He was subsequently convicted of bigamy and spent three days in prison, losing his job at Uppingham, in 1887 Charles moved with Mary Ellen to Japan to work in a mission before accepting a job as headmaster of the Victoria Public School. In 1893 he sailed to the United States on the SS Tacoma to take up a post at Princeton University as an instructor in mathematics, in 1897, he designed a gunpowder-powered baseball pitching machine for the Princeton baseball teams batting practice. The machine was versatile, capable of variable speeds with an adjustable breech size, at the end of his life, Hinton worked as an examiner of chemical patents for the United States Patent Office. At age 54, he died unexpectedly of a hemorrhage on 30 April 1907. After Hintons sudden death his wife, Mary Ellen, committed suicide in Washington, in an 1880 article entitled What is the Fourth Dimension. Hinton calls the casting out the self, equates it with the process of sympathizing with another person. Hinton created several new words to describe elements in the fourth dimension, according to OED, he first used the word tesseract in 1888 in his book A New Era of Thought. He also invented the words kata and ana to describe the two opposing fourth-dimensional directions. Hintons Scientific romances, including What is the Fourth Dimension. and A Plane World, were published as a series of nine pamphlets by Swan Sonnenschein & Co. during 1884–1886. In the introduction to A Plane World, Hinton referred to Abbotts recent Flatland as having similar design, Abbott used the stories as a setting wherein to place his satire and his lessons. But we wish in the first place to know the physical facts, Hintons world existed along the perimeter of a circle rather than on an infinite flat plane. He extended the connection to Abbotts work with An Episode on Flatland, Hinton was one of the many thinkers who circulated in Jorge Luis Borgess pantheon of writers. Hinton is mentioned in Borges short stories Tlön, Uqbar, Orbis Tertius, There Are More Things and El milagro secreto, many of ideas Ouspensky presents in Tertium Organum mention Hintons works
7.
Albert Einstein
–
Albert Einstein was a German-born theoretical physicist. He developed the theory of relativity, one of the two pillars of modern physics, Einsteins work is also known for its influence on the philosophy of science. Einstein is best known in popular culture for his mass–energy equivalence formula E = mc2, near the beginning of his career, Einstein thought that Newtonian mechanics was no longer enough to reconcile the laws of classical mechanics with the laws of the electromagnetic field. This led him to develop his theory of relativity during his time at the Swiss Patent Office in Bern. Briefly before, he aquired the Swiss citizenship in 1901, which he kept for his whole life and he continued to deal with problems of statistical mechanics and quantum theory, which led to his explanations of particle theory and the motion of molecules. He also investigated the properties of light which laid the foundation of the photon theory of light. In 1917, Einstein applied the theory of relativity to model the large-scale structure of the universe. He was visiting the United States when Adolf Hitler came to power in 1933 and, being Jewish, did not go back to Germany and he settled in the United States, becoming an American citizen in 1940. This eventually led to what would become the Manhattan Project, Einstein supported defending the Allied forces, but generally denounced the idea of using the newly discovered nuclear fission as a weapon. Later, with the British philosopher Bertrand Russell, Einstein signed the Russell–Einstein Manifesto, Einstein was affiliated with the Institute for Advanced Study in Princeton, New Jersey, until his death in 1955. Einstein published more than 300 scientific papers along with over 150 non-scientific works, on 5 December 2014, universities and archives announced the release of Einsteins papers, comprising more than 30,000 unique documents. Einsteins intellectual achievements and originality have made the word Einstein synonymous with genius, Albert Einstein was born in Ulm, in the Kingdom of Württemberg in the German Empire, on 14 March 1879. His parents were Hermann Einstein, a salesman and engineer, the Einsteins were non-observant Ashkenazi Jews, and Albert attended a Catholic elementary school in Munich from the age of 5 for three years. At the age of 8, he was transferred to the Luitpold Gymnasium, the loss forced the sale of the Munich factory. In search of business, the Einstein family moved to Italy, first to Milan, when the family moved to Pavia, Einstein stayed in Munich to finish his studies at the Luitpold Gymnasium. His father intended for him to electrical engineering, but Einstein clashed with authorities and resented the schools regimen. He later wrote that the spirit of learning and creative thought was lost in strict rote learning, at the end of December 1894, he travelled to Italy to join his family in Pavia, convincing the school to let him go by using a doctors note. During his time in Italy he wrote an essay with the title On the Investigation of the State of the Ether in a Magnetic Field
8.
Spacetime
–
In physics, spacetime is any mathematical model that combines space and time into a single interwoven continuum. Until the turn of the 20th century, the assumption had been that the 3D geometry of the universe was distinct from time, Einsteins theory was framed in terms of kinematics, and showed how measurements of space and time varied for observers in different reference frames. His theory was an advance over Lorentzs 1904 theory of electromagnetic phenomena. A key feature of this interpretation is the definition of an interval that combines distance. Although measurements of distance and time between events differ among observers, the interval is independent of the inertial frame of reference in which they are recorded. The resultant spacetime came to be known as Minkowski space, non-relativistic classical mechanics treats time as a universal quantity of measurement which is uniform throughout space and which is separate from space. Classical mechanics assumes that time has a constant rate of passage that is independent of the state of motion of an observer, furthermore, it assumes that space is Euclidean, which is to say, it assumes that space follows the geometry of common sense. General relativity, in addition, provides an explanation of how gravitational fields can slow the passage of time for an object as seen by an observer outside the field. Mathematically, spacetime is a manifold, which is to say, by analogy, at small enough scales, a globe appears flat. An extremely large scale factor, c relates distances measured in space with distances measured in time, waves implied the existence of a medium which waved, but attempts to measure the properties of the hypothetical luminiferous aether implied by these experiments provided contradictory results. For example, the Fizeau experiment of 1851 demonstrated that the speed of light in flowing water was less than the speed of light in air plus the speed of the flowing water, the partial aether-dragging implied by this result was in conflict with measurements of stellar aberration. By 1904, Lorentz had expanded his theory such that he had arrived at equations formally identical with those that Einstein were to derive later, but with a fundamentally different interpretation. As a theory of dynamics, his theory assumed actual physical deformations of the constituents of matter. For example, most physicists believed that Lorentz contraction would be detectable by such experiments as the Trouton–Noble experiment or the Experiments of Rayleigh and Brace. However, these negative results, and in his 1904 theory of the electron. Einstein performed his analyses in terms of kinematics rather than dynamics and it would appear that he did not at first think geometrically about spacetime. It was Einsteins former mathematics professor, Hermann Minkowski, who was to provide an interpretation of special relativity. Einstein was initially dismissive of the interpretation of special relativity
9.
Minkowski space
–
Minkowski space is closely associated with Einsteins theory of special relativity, and is the most common mathematical structure on which special relativity is formulated. Because it treats time differently than it treats the three dimensions, Minkowski space differs from four-dimensional Euclidean space. In 3-dimensional Euclidean space, the group is the Euclidean group. It consists of rotations, reflections, and translations, when time is amended as a fourth dimension, the further transformations of translations in time and Galilean boosts are added, and the group of all these transformations is called the Galilean group. All Galilean transformations preserve the 3-dimensional Euclidean distance, Time differences are separately preserved as well. This changes in the spacetime of special relativity, where space, spacetime is equipped with an indefinite non-degenerate bilinear form. Equipped with this product, the mathematical model of spacetime is called Minkowski space. The analogue of the Galilean group for Minkowski space, preserving the interval is the Poincaré group. In summary, Galilean spacetime and Minkowski spacetime are, when viewed as barebones manifolds and they differ in what kind of further structures are defined on them. Here the speed of c is, following Poincare, set to unity. The naming and ordering of coordinates, with the labels for space coordinates. The above expression, while making the expression more familiar. Rotations in planes spanned by two unit vectors appear in coordinate space as well as in physical spacetime appear as Euclidean rotations and are interpreted in the ordinary sense. The analogy with Euclidean rotations is thus only partial and this idea was elaborated by Hermann Minkowski, who used it to restate the Maxwell equations in four dimensions, showing directly their invariance under the Lorentz transformation. He further reformulated in four dimensions the then-recent theory of relativity of Einstein. From this he concluded that time and space should be treated equally, points in this space correspond to events in spacetime. In this space, there is a defined light-cone associated with each point and it is principally this view of spacetime that is current nowadays, although the older view involving imaginary time has also influenced special relativity. An imaginary time coordinate is used also for more subtle reasons in quantum field theory than formal appearance of expressions, in this context, the transformation is called a Wick rotation
10.
Euclidean geometry
–
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry, the Elements. Euclids method consists in assuming a set of intuitively appealing axioms. Although many of Euclids results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in school as the first axiomatic system. It goes on to the geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, for more than two thousand years, the adjective Euclidean was unnecessary because no other sort of geometry had been conceived. Euclids axioms seemed so obvious that any theorem proved from them was deemed true in an absolute, often metaphysical. Today, however, many other self-consistent non-Euclidean geometries are known, Euclidean geometry is an example of synthetic geometry, in that it proceeds logically from axioms to propositions without the use of coordinates. This is in contrast to analytic geometry, which uses coordinates, the Elements is mainly a systematization of earlier knowledge of geometry. Its improvement over earlier treatments was recognized, with the result that there was little interest in preserving the earlier ones. There are 13 total books in the Elements, Books I–IV, Books V and VII–X deal with number theory, with numbers treated geometrically via their representation as line segments with various lengths. Notions such as numbers and rational and irrational numbers are introduced. The infinitude of prime numbers is proved, a typical result is the 1,3 ratio between the volume of a cone and a cylinder with the same height and base. Euclidean geometry is a system, in which all theorems are derived from a small number of axioms. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. Although Euclids statement of the only explicitly asserts the existence of the constructions. The Elements also include the five common notions, Things that are equal to the same thing are also equal to one another
11.
Vector space
–
A vector space is a collection of objects called vectors, which may be added together and multiplied by numbers, called scalars in this context. Scalars are often taken to be numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers. The operations of addition and scalar multiplication must satisfy certain requirements, called axioms. Euclidean vectors are an example of a vector space and they represent physical quantities such as forces, any two forces can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces and these vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are commonly used. This is particularly the case of Banach spaces and Hilbert spaces, historically, the first ideas leading to vector spaces can be traced back as far as the 17th centurys analytic geometry, matrices, systems of linear equations, and Euclidean vectors. Today, vector spaces are applied throughout mathematics, science and engineering, furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques, Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra. The concept of space will first be explained by describing two particular examples, The first example of a vector space consists of arrows in a fixed plane. This is used in physics to describe forces or velocities, given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows and is denoted v + w, when a is negative, av is defined as the arrow pointing in the opposite direction, instead. Such a pair is written as, the sum of two such pairs and multiplication of a pair with a number is defined as follows, + = and a =. The first example above reduces to one if the arrows are represented by the pair of Cartesian coordinates of their end points. A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below, elements of V are commonly called vectors. Elements of F are commonly called scalars, the second operation, called scalar multiplication takes any scalar a and any vector v and gives another vector av. In this article, vectors are represented in boldface to distinguish them from scalars
12.
Mechanics
–
Mechanics is an area of science concerned with the behaviour of physical bodies when subjected to forces or displacements, and the subsequent effects of the bodies on their environment. The scientific discipline has its origins in Ancient Greece with the writings of Aristotle, during the early modern period, scientists such as Khayaam, Galileo, Kepler, and Newton, laid the foundation for what is now known as classical mechanics. It is a branch of physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as a branch of science which deals with the motion of, historically, classical mechanics came first, while quantum mechanics is a comparatively recent invention. Classical mechanics originated with Isaac Newtons laws of motion in Philosophiæ Naturalis Principia Mathematica, both are commonly held to constitute the most certain knowledge that exists about physical nature. Classical mechanics has especially often been viewed as a model for other so-called exact sciences, essential in this respect is the relentless use of mathematics in theories, as well as the decisive role played by experiment in generating and testing them. Quantum mechanics is of a scope, as it encompasses classical mechanics as a sub-discipline which applies under certain restricted circumstances. According to the principle, there is no contradiction or conflict between the two subjects, each simply pertains to specific situations. The correspondence principle states that the behavior of systems described by quantum theories reproduces classical physics in the limit of quantum numbers. Quantum mechanics has superseded classical mechanics at the level and is indispensable for the explanation and prediction of processes at the molecular, atomic. However, for macroscopic processes classical mechanics is able to solve problems which are difficult in quantum mechanics and hence remains useful. Modern descriptions of such behavior begin with a definition of such quantities as displacement, time, velocity, acceleration, mass. Until about 400 years ago, however, motion was explained from a different point of view. He showed that the speed of falling objects increases steadily during the time of their fall and this acceleration is the same for heavy objects as for light ones, provided air friction is discounted. The English mathematician and physicist Isaac Newton improved this analysis by defining force and mass, for objects traveling at speeds close to the speed of light, Newton’s laws were superseded by Albert Einstein’s theory of relativity. For atomic and subatomic particles, Newton’s laws were superseded by quantum theory, for everyday phenomena, however, Newton’s three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion. In analogy to the distinction between quantum and classical mechanics, Einsteins general and special theories of relativity have expanded the scope of Newton, the differences between relativistic and Newtonian mechanics become significant and even dominant as the velocity of a massive body approaches the speed of light. Relativistic corrections are also needed for quantum mechanics, although general relativity has not been integrated, the two theories remain incompatible, a hurdle which must be overcome in developing a theory of everything
13.
Polytope
–
In elementary geometry, a polytope is a geometric object with flat sides, and may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. For example, a polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope. Polytopes in more than three dimensions were first discovered by Ludwig Schläfli, the German term polytop was coined by the mathematician Reinhold Hoppe, and was introduced to English mathematicians as polytope by Alicia Boole Stott. The term polytope is nowadays a broad term that covers a class of objects. Many of these definitions are not equivalent, resulting in different sets of objects being called polytopes and they represent different approaches to generalizing the convex polytopes to include other objects with similar properties. In this approach, a polytope may be regarded as a tessellation or decomposition of some given manifold, an example of this approach defines a polytope as a set of points that admits a simplicial decomposition. However this definition does not allow star polytopes with interior structures, the discovery of star polyhedra and other unusual constructions led to the idea of a polyhedron as a bounding surface, ignoring its interior. A polyhedron is understood as a surface whose faces are polygons, a 4-polytope as a hypersurface whose facets are polyhedra and this approach is used for example in the theory of abstract polytopes. In certain fields of mathematics, the terms polytope and polyhedron are used in a different sense and this terminology is typically confined to polytopes and polyhedra that are convex. A polytope comprises elements of different dimensionality such as vertices, edges, faces, cells, terminology for these is not fully consistent across different authors. For example, some authors use face to refer to an -dimensional element while others use face to denote a 2-face specifically, authors may use j-face or j-facet to indicate an element of j dimensions. Some use edge to refer to a ridge, while H. S. M. Coxeter uses cell to denote an -dimensional element, the terms adopted in this article are given in the table below, An n-dimensional polytope is bounded by a number of -dimensional facets. These facets are themselves polytopes, whose facets are -dimensional ridges of the original polytope, Every ridge arises as the intersection of two facets. Ridges are once again polytopes whose facets give rise to -dimensional boundaries of the original polytope and these bounding sub-polytopes may be referred to as faces, or specifically j-dimensional faces or j-faces. A 0-dimensional face is called a vertex, and consists of a single point, a 1-dimensional face is called an edge, and consists of a line segment. A 2-dimensional face consists of a polygon, and a 3-dimensional face, sometimes called a cell, the convex polytopes are the simplest kind of polytopes, and form the basis for several different generalizations of the concept of polytopes. A convex polytope is defined as the intersection of a set of half-spaces. This definition allows a polytope to be neither bounded nor finite, Polytopes are defined in this way, e. g. in linear programming
14.
Dimension
–
In physics and mathematics, the dimension of a mathematical space is informally defined as the minimum number of coordinates needed to specify any point within it. Thus a line has a dimension of one only one coordinate is needed to specify a point on it – for example. The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed to locate a point within these spaces, in classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a space but not the one that was found necessary to describe electromagnetism. The four dimensions of spacetime consist of events that are not absolutely defined spatially and temporally, Minkowski space first approximates the universe without gravity, the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. Ten dimensions are used to string theory, and the state-space of quantum mechanics is an infinite-dimensional function space. The concept of dimension is not restricted to physical objects, high-dimensional spaces frequently occur in mathematics and the sciences. They may be parameter spaces or configuration spaces such as in Lagrangian or Hamiltonian mechanics, in mathematics, the dimension of an object is an intrinsic property independent of the space in which the object is embedded. This intrinsic notion of dimension is one of the ways the mathematical notion of dimension differs from its common usages. The dimension of Euclidean n-space En is n, when trying to generalize to other types of spaces, one is faced with the question what makes En n-dimensional. One answer is that to cover a ball in En by small balls of radius ε. This observation leads to the definition of the Minkowski dimension and its more sophisticated variant, the Hausdorff dimension, for example, the boundary of a ball in En looks locally like En-1 and this leads to the notion of the inductive dimension. While these notions agree on En, they turn out to be different when one looks at more general spaces, a tesseract is an example of a four-dimensional object. The rest of this section some of the more important mathematical definitions of the dimensions. A complex number has a real part x and an imaginary part y, a single complex coordinate system may be applied to an object having two real dimensions. For example, an ordinary two-dimensional spherical surface, when given a complex metric, complex dimensions appear in the study of complex manifolds and algebraic varieties. The dimension of a space is the number of vectors in any basis for the space. This notion of dimension is referred to as the Hamel dimension or algebraic dimension to distinguish it from other notions of dimension
15.
Quaternion
–
In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843, a feature of quaternions is that multiplication of two quaternions is noncommutative. Hamilton defined a quaternion as the quotient of two directed lines in a space or equivalently as the quotient of two vectors. Quaternions are generally represented in the form, a + bi + cj + dk where a, b, c, and d are real numbers, and i, j, and k are the fundamental quaternion units. In practical applications, they can be used other methods, such as Euler angles and rotation matrices, or as an alternative to them. In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, in fact, the quaternions were the first noncommutative division algebra to be discovered. The algebra of quaternions is often denoted by H, or in blackboard bold by H and it can also be given by the Clifford algebra classifications Cℓ0,2 ≅ Cℓ03,0. These rings are also Euclidean Hurwitz algebras, of which quaternions are the largest associative algebra. The unit quaternions can be thought of as a choice of a structure on the 3-sphere S3 that gives the group Spin. Quaternion algebra was introduced by Hamilton in 1843, carl Friedrich Gauss had also discovered quaternions in 1819, but this work was not published until 1900. Hamilton knew that the numbers could be interpreted as points in a plane. Points in space can be represented by their coordinates, which are triples of numbers, however, Hamilton had been stuck on the problem of multiplication and division for a long time. He could not figure out how to calculate the quotient of the coordinates of two points in space. The great breakthrough in quaternions finally came on Monday 16 October 1843 in Dublin, as he walked along the towpath of the Royal Canal with his wife, the concepts behind quaternions were taking shape in his mind. When the answer dawned on him, Hamilton could not resist the urge to carve the formula for the quaternions, i2 = j2 = k2 = ijk = −1, into the stone of Brougham Bridge as he paused on it. On the following day, Hamilton wrote a letter to his friend and fellow mathematician, John T. Graves and this letter was later published in the London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. xxv, pp 489–95. In the letter, Hamilton states, And here there dawned on me the notion that we must admit, in some sense, an electric circuit seemed to close, and a spark flashed forth. Hamilton called a quadruple with these rules of multiplication a quaternion, Hamiltons treatment is more geometric than the modern approach, which emphasizes quaternions algebraic properties
16.
William Rowan Hamilton
–
Sir William Rowan Hamilton PRIA FRSE was an Irish physicist, astronomer, and mathematician, who made important contributions to classical mechanics, optics, and algebra. His studies of mechanical and optical systems led him to discover new mathematical concepts and his best known contribution to mathematical physics is the reformulation of Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the study of classical field theories such as electromagnetism. In pure mathematics, he is best known as the inventor of quaternions, Hamilton is said to have shown immense talent at a very early age. Astronomer Bishop Dr. John Brinkley remarked of the 18-year-old Hamilton, This young man, I do not say will be, but is, Hamilton also invented icosian calculus, which he used to investigate closed edge paths on a dodecahedron that visit each vertex exactly once. Hamilton was the fourth of nine born to Sarah Hutton and Archibald Hamilton. Hamiltons father, who was from Dunboyne, worked as a solicitor, by the age of three, Hamilton had been sent to live with his uncle James Hamilton, a graduate of Trinity College who ran a school in Talbots Castle in Trim, Co. His uncle soon discovered that Hamilton had an ability to learn languages. At the age of seven he had made very considerable progress in Hebrew. These included the classical and modern European languages, and Persian, Arabic, Hindustani, Sanskrit, in September 1813 the American calculating prodigy Zerah Colburn was being exhibited in Dublin. Colburn was 9, an older than Hamilton. The two were pitted against each other in a mental arithmetic contest with Colburn emerging the clear victor, in reaction to his defeat, Hamilton dedicated less time to studying languages and more time to studying mathematics. Hamilton was part of a small but well-regarded school of mathematicians associated with Trinity College, Dublin, which he entered at age 18. He studied both classics and mathematics, and was appointed Professor of Astronomy in 1827, prior to his taking up residence at Dunsink Observatory where he spent the rest of his life. Hamilton made important contributions to optics and to classical mechanics and his first discovery was in an early paper that he communicated in 1823 to Dr. Brinkley, who presented it under the title of Caustics in 1824 to the Royal Irish Academy. It was referred as usual to a committee, while their report acknowledged its novelty and value, they recommended further development and simplification before publication. Between 1825 and 1828 the paper grew to an immense size, but it also became more intelligible, and the features of the new method were now easily to be seen. Until this period Hamilton himself seems not to have fully understood either the nature or importance of optics and he proposed for it when he first predicted its existence in the third supplement to his Systems of Rays, read in 1832
17.
Split-quaternion
–
In abstract algebra, the split-quaternions or coquaternions are elements of a 4-dimensional associative algebra introduced by James Cockle in 1849 under the latter name. Like the quaternions introduced by Hamilton in 1843, they form a four dimensional vector space equipped with a multiplicative operation. Unlike the quaternion algebra, the split-quaternions contain zero divisors, nilpotent elements, as a mathematical structure, they form an algebra over the real numbers, which is isomorphic to the algebra of 2 × 2 real matrices. For other names for split-quaternions see the Synonyms section below. The products of elements are ij = k = −ji, jk = −i = −kj, ki = j = −ik, i2 = −1, j2 = +1, k2 = +1. It follows from the relations that the set is a group under coquaternion multiplication. A coquaternion q = w + xi + yj + zk, has a conjugate q* = w − xi − yj − zk. Due to the property of its basis vectors, the product of a coquaternion with its conjugate is given by an isotropic quadratic form. Given two coquaterions p and q, one has N = N N, showing that N is a quadratic form admitting composition and this algebra is a composition algebra and N is its norm. Any q ≠0 such that N =0 is a vector, and its presence means that coquaternions form a split composition algebra. When the norm is non-zero, then q has a multiplicative inverse, the set U = is the set of units. The set P of all coquaternions forms a ring with group of units, the coquaternions with N =1 form a non-compact topological group SU, shown below to be isomorphic to SL. Historically coquaternions preceded Cayleys matrix algebra, coquaternions evoked the broader linear algebra, then the complex matrix, represents q in the ring of matrices, i. e. the multiplication of split-quaternions behaves the same way as the matrix multiplication. For example, the determinant of matrix is uu* − vv* = qq*. The appearance of the sign, where there is a plus in H. The use of the split-quaternions of norm one for hyperbolic motions of the Poincaré disk model of geometry is one of the great utilities of the algebra. Besides the complex representation, another linear representation associates coquaternions with 2 ×2 real matrices. Furthermore, note that these three matrices, together with the identity matrix, form a basis for M, one can make the matrix product above correspond to jk = −i in the coquaternion ring
18.
University of Dublin
–
The University of Dublin, corporately designated the Chancellor, Doctors and Masters of the University of Dublin, is a university located in Dublin, Ireland. It is the awarding body for Trinity College, Dublin. It was founded in 1592 when Queen Elizabeth I issued a charter for Trinity College, as the mother of a university, the University of Dublin is one of the seven ancient universities of Britain and Ireland. It is a member of the Irish Universities Association, Universities Ireland, the University of Dublin was modelled on the University of Oxford and the University of Cambridge as a collegiate university, Trinity College being named by the Queen as the mater universitatis. The founding Charter also conferred a general power on the College to make provision for university functions to be carried out, no other college has ever been established, and Trinity remains the sole constituent college of the university. The project of establishing another college within the University was seriously considered on at least two occasions, but the required finance or endowment was never available, the most recent authoritative statement of the position is in the Universities Act,1997. In the section relating to interpretation it specifies that, -3. to date the other rights have not been exercised. Current Officers of the University are either unpaid and purely honorary, or have duties relating to the college also, for which they are paid, traditionally, sports clubs also use the moniker University rather than College. The university is governed by the university senate, chaired by the chancellor or their pro-chancellor, consequently, the Senate does not determine its own composition. However this is countered by the role of the Visitors, each meeting of the Senate is headed by a Caput, consisting of the Chancellor, the Provost of Trinity College and the Senior Master Non-Regent. The practical significance of the Caput is that no meeting of the Senate may be convened with out it, Meetings of the Senate are of two kinds. In each academic year, the Senate holds not less than four Stated Meetings for the Conferring of Degrees, of these Meetings, the proceedings of these meetings, conducted in a highly formal and scripted manner, are carried out in Latin. Although voting takes place at meetings, discussion does not. Voting takes place to elect a Senior Master Non Regent, or on whether degrees should be conferred on named candidates, Honorary Degrees, while being conferred at a commencements are not even formally voted on there. Voting on a candidate for an Honorary degree takes place at a business meeting of the Senate, so if any objection to a proposed Honorary Degree award is to be made. It follows that no objection to an Honorary Degree can be made at a Public Commencements, at the first Public Commencements of the academic year the Senior Master Non-Regent is elected on the proposition of the Chancellor and the Provost. The Senate votes on the name put forward by a voice vote, the Senior Master Non Regent is elected for a one-year term, but may be re elected. The Senior and Junior Proctors and the Registrar also make the declaration which is appropriate to their respective offices, in attendance also are, usually, the Registrar and the Junior and Senior Proctors
19.
A New Era of Thought
–
A New Era of Thought is a non-fiction work written by Charles Howard Hinton, was published in 1888 and reprinted in 1900 by Swan Sonnenschein & Co. Ltd. A New Era of Thought is about the dimension and its implications on human thinking. It influenced the work of P. D and it is prefaced by Alicia Boole and H. John Falk. A New Era of Thought is inspired by Platos allegory of the cave and is influenced by the works of Immanuel Kant, Carl Friedrich Gauss, the book has xvi and 230 pages. A New Era of Thought consists of two parts, the first part is a collection of philosophical and mathematical essays on the fourth dimension. They teach the possibility of thinking four-dimensionally and about the religious, in the second part Hinton develops a system of coloured cubes. These cubes serve as model to get a four-dimensional perception as a basis of four-dimensional thinking and this part describes how to visualize a tessaract by looking at several 3-D cross sections of it. The system of cubic models in A New Era of Thought is a forerunner of the models in Hintons book The Fourth Dimension. Preface Table of Contents Introductory Note to Part I Part I Introduction Chapter I, relation of Lower and Higher Space. Space the Scientific Basis of Altruism and Religion, Appearances of a Cube to a Plane-being. Further Appearances of a Cube to a Plane-being, genesis of a Tessaract, its Representation in Three-space. Representation of Three-space by Names and in a Plane, the Means by which a Plane-being would Acquire a Conception of our Figures. A Tessaractic Figure and its Projections, appendices A.100 Names used for Plane Space. B.216 Names used for Cubic Space, C.256 Names used for Tessaractic Space. List of Colours, Names and Symbols, Exercises on Shapes of Three Dimensions. G. Exercises on Shapes of Four Dimensions, drawings of the Cubic Sides and Sections of the Tessaract with Colours and Names. Hintons writings contains some abridged passages of the first part of A New Era of Thought, a New Era of Thought from Australian National Library A New Era of Thought from Google Books
20.
Martin Gardner
–
He was considered a leading authority on Lewis Carroll. The Annotated Alice, which incorporated the text of Carrolls two Alice books, was his most successful work and sold over a million copies and he had a lifelong interest in magic and illusion and was regarded as one of the most important magicians of the twentieth century. He was considered the dean of American puzzlers and he was a prolific and versatile author, publishing more than 100 books. Gardner was one of the foremost anti-pseudoscience polemicists of the 20th century and his book Fads and Fallacies in the Name of Science, published in 1957, became a classic and seminal work of the skeptical movement. In 1976 he joined with fellow skeptics to found CSICOP, an organization promoting scientific inquiry, Gardner, son of a petroleum geologist, grew up in and around Tulsa, Oklahoma. His lifelong interest in puzzles started in his boyhood when his father gave him a copy of Sam Loyds Cyclopedia of 5000 Puzzles, Tricks and he attended the University of Chicago, where he earned his bachelors degree in philosophy in 1936. Early jobs included reporter on the Tulsa Tribune, writer at the University of Chicago Office of Press Relations, during World War II, he served for four years in the U. S. Navy as a yeoman on board the destroyer escort USS Pope in the Atlantic. His ship was still in the Atlantic when the war came to an end with the surrender of Japan in August 1945, after the war, Gardner returned to the University of Chicago. He attended graduate school for a year there, but he did not earn an advanced degree, in 1950 he wrote an article in the Antioch Review entitled The Hermit Scientist. His paper-folding puzzles at that magazine led to his first work at Scientific American, appropriately enough—given his interest in logic and mathematics—they lived on Euclid Avenue. The year 1960 saw the edition of his best-selling book ever. In 1979, Gardner retired from Scientific American and he and his wife Charlotte moved to Hendersonville and he also revised some of his older books such as Origami, Eleusis, and the Soma Cube. Charlotte died in 2000 and two years later Gardner returned to Norman, Oklahoma, where his son, James Gardner, was a professor of education at the University of Oklahoma and he died there on May 22,2010. An autobiography — Undiluted Hocus-Pocus, The Autobiography of Martin Gardner — was published posthumously, the main-belt asteroid 2587 Gardner discovered by Edward L. G. Bowell at Anderson Mesa Station in 1980 is named after Martin Gardner. Martin Gardner had a impact on mathematics in the second half of the 20th century. His column was called Mathematical Games but it was more than that. His writing introduced many readers to real mathematics for the first time in their lives, the column lasted for 25 years and was read avidly by the generation of mathematicians and physicists who grew up in the years 1956 to 1981. It was the inspiration for many of them to become mathematicians or scientists themselves
21.
Scientific American
–
Scientific American is an American popular science magazine. Many famous scientists, including Albert Einstein, have contributed articles in the past 170 years and it is the oldest continuously published monthly magazine in the United States. Scientific American was founded by inventor and publisher Rufus M. Porter in 1845 as a weekly newspaper. Throughout its early years, much emphasis was placed on reports of what was going on at the U. S, current issues include a this date in history section, featuring excerpts from articles originally published 50,100, and 150 years earlier. Topics include humorous incidents, wrong-headed theories, and noteworthy advances in the history of science, Porter sold the publication to Alfred Ely Beach and Orson Desaix Munn a mere ten months after founding it. Until 1948, it remained owned by Munn & Company, under Munns grandson, Orson Desaix Munn III, it had evolved into something of a workbench publication, similar to the twentieth-century incarnation of Popular Science. In the years after World War II, the fell into decline. Thus the partners—publisher Gerard Piel, editor Dennis Flanagan, and general manager Donald H. Miller, Miller retired in 1979, Flanagan and Piel in 1984, when Gerard Piels son Jonathan became president and editor, circulation had grown fifteen-fold since 1948. In 1986, it was sold to the Holtzbrinck group of Germany, in the fall of 2008, Scientific American was put under the control of Nature Publishing Group, a division of Holtzbrinck. Donald Miller died in December 1998, Gerard Piel in September 2004, Mariette DiChristina is the current editor-in-chief, after John Rennie stepped down in June 2009. Scientific American published its first foreign edition in 1890, the Spanish-language La America Cientifica, a Russian edition V Mire Nauki was launched in the Soviet Union in 1983, and continues in the present-day Russian Federation. Kexue, a simplified Chinese edition launched in 1979, was the first Western magazine published in the Peoples Republic of China, founded in Chongqing, the simplified Chinese magazine was transferred to Beijing in 2001. Later in 2005, an edition, Global Science, was published instead of Kexue. A traditional Chinese edition, known as 科學人, was introduced to Taiwan in 2002, the Hungarian edition Tudomány existed between 1984 and 1992. In 1986, an Arabic edition, Oloom magazine, was published, in 2002, a Portuguese edition was launched in Brazil. From 1902 to 1911, Scientific American supervised the publication of the Encyclopedia Americana and it originally styled itself The Advocate of Industry and Enterprise and Journal of Mechanical and other Improvements. On the front page of the first issue was the engraving of Improved Rail-Road Cars, the masthead had a commentary as follows, Scientific American published every Thursday morning at No.11 Spruce Street, New York, No.16 State Street, Boston, and No. 2l Arcade Philadelphia, by Rufus Porter, five copies will be sent to one address six months for four dollars in advance
22.
Schlegel diagram
–
In geometry, a Schlegel diagram is a projection of a polytope from R d into R d −1 through a point beyond one of its facets or faces. The resulting entity is a subdivision of the facet in R d −1 that is combinatorially equivalent to the original polytope. Named for Victor Schlegel, who in 1886 introduced this tool for studying combinatorial and topological properties of polytopes, in dimensions 3 and 4, a Schlegel diagram is a projection of a polyhedron into a plane figure and a projection of a 4-polytope to 3-space, respectively. As such, Schlegel diagrams are used as a means of visualizing four-dimensional polytopes. The most elementary Schlegel diagram, that of a polyhedron, was described by Duncan Sommerville as follows, if it is projected from any external point, since each ray cuts it twice, it will be represented by a polygonal area divided twice over into polygons. It is always possible by suitable choice of the centre of projection to make the projection of one face completely contain the projections of all the other faces and this is called a Schlegel diagram of the polyhedron. The Schlegel diagram completely represents the morphology of the polyhedron, Sommerville also considers the case of a simplex in four dimensions, The Schlegel diagram of simplex in S4 is a tetrahedron divided into four tetrahedra. More generally, a polytope in n-dimensions has a Schegel diagram constructed by a perspective projection viewed from a point outside of the polytope, all vertices and edges of the polytope are projected onto a hyperplane of that facet. If the polytope is convex, a point near the facet will exist which maps the facet outside, and all other facets inside, so no edges need to cross in the projection. Net – A different approach for visualization by lowering the dimension of a polytope is to build a net, disconnecting facets and this maintains the geometric scale and shape, but makes the topological connections harder to see. Victor Schlegel Theorie der homogen zusammengesetzten Raumgebilde, Nova Acta, Ksl, deutsche Akademie der Naturforscher, Band XLIV, Nr. 4, Druck von E. Blochmann & Sohn in Dresden, Victor Schlegel Ueber Projectionsmodelle der regelmässigen vier-dimensionalen Körper, Waren. Regular Polytopes, Dover edition, ISBN 0-486-61480-8 Grünbaum, Branko, Kaibel, Volker, Klee, Victor, convex polytopes, New York & London, Springer-Verlag, ISBN 0-387-00424-6. George W. Hart, 4D Polytope Projection Models by 3D Printing Nrich maths – for the teenager
23.
Hermann Minkowski
–
Hermann Minkowski was a Jewish German mathematician, professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used methods to solve problems in number theory, mathematical physics. Hermann was a brother of the medical researcher, Oskar. In different sources Minkowskis nationality is given as German, Polish, Lithuanian or Lithuanian-German. To escape persecution in Russia the family moved to Königsberg in 1872, Minkowski studied in Königsberg and taught in Bonn, Königsberg and Zurich, and finally in Göttingen from 1902 until his premature death in 1909. He married Auguste Adler in 1897 with whom he had two daughters, the engineer and inventor Reinhold Rudenberg was his son-in-law. Minkowski died suddenly of appendicitis in Göttingen on 12 January 1909 and our science, which we loved above all else, brought us together, it seemed to us a garden full of flowers. He was for me a gift from heaven and I must be grateful to have possessed that gift for so long. Now death has suddenly torn him from our midst, however, what death cannot take away is his noble image in our hearts and the knowledge that his spirit continues to be active in us. The main-belt asteroid 12493 Minkowski and M-matrices are named in Minkowskis honor, Minkowski was educated in Germany at the Albertina University of Königsberg, where he earned his doctorate in 1885 under the direction of Ferdinand von Lindemann. In 1883, while still a student at Königsberg, he was awarded the Mathematics Prize of the French Academy of Sciences for his manuscript on the theory of quadratic forms and he also became a friend of another renowned mathematician, David Hilbert. His brother, Oskar Minkowski, was a physician and researcher. Minkowski taught at the universities of Bonn, Göttingen, Königsberg, at the Eidgenössische Polytechnikum, today the ETH Zurich, he was one of Einsteins teachers. Minkowski explored the arithmetic of quadratic forms, especially concerning n variables, in 1896, he presented his geometry of numbers, a geometrical method that solved problems in number theory. He is also the creator of the Minkowski Sausage and the Minkowski cover of a curve, in 1902, he joined the Mathematics Department of Göttingen and became a close colleague of David Hilbert, whom he first met at university in Königsberg. Constantin Carathéodory was one of his students there, henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 53–111. English translation, The Fundamental Equations for Electromagnetic Processes in Moving Bodies, in, The Principle of Relativity, Calcutta, University Press, 1–69 Minkowski, Hermann
24.
Special relativity
–
In physics, special relativity is the generally accepted and experimentally well-confirmed physical theory regarding the relationship between space and time. In Albert Einsteins original pedagogical treatment, it is based on two postulates, The laws of physics are invariant in all inertial systems, the speed of light in a vacuum is the same for all observers, regardless of the motion of the light source. It was originally proposed in 1905 by Albert Einstein in the paper On the Electrodynamics of Moving Bodies, as of today, special relativity is the most accurate model of motion at any speed. Even so, the Newtonian mechanics model is useful as an approximation at small velocities relative to the speed of light. Not until Einstein developed general relativity, to incorporate general frames of reference, a translation that has often been used is restricted relativity, special really means special case. It has replaced the notion of an absolute universal time with the notion of a time that is dependent on reference frame. Rather than an invariant time interval between two events, there is an invariant spacetime interval, a defining feature of special relativity is the replacement of the Galilean transformations of Newtonian mechanics with the Lorentz transformations. Time and space cannot be defined separately from each other, rather space and time are interwoven into a single continuum known as spacetime. Events that occur at the time for one observer can occur at different times for another. The theory is special in that it applies in the special case where the curvature of spacetime due to gravity is negligible. In order to include gravity, Einstein formulated general relativity in 1915, Special relativity, contrary to some outdated descriptions, is capable of handling accelerations as well as accelerated frames of reference. e. At a sufficiently small scale and in conditions of free fall, a locally Lorentz-invariant frame that abides by special relativity can be defined at sufficiently small scales, even in curved spacetime. Galileo Galilei had already postulated that there is no absolute and well-defined state of rest, Einstein extended this principle so that it accounted for the constant speed of light, a phenomenon that had been recently observed in the Michelson–Morley experiment. He also postulated that it holds for all the laws of physics, Einstein discerned two fundamental propositions that seemed to be the most assured, regardless of the exact validity of the known laws of either mechanics or electrodynamics. These propositions were the constancy of the speed of light and the independence of physical laws from the choice of inertial system, the Principle of Invariant Light Speed –. Light is always propagated in empty space with a definite velocity c which is independent of the state of motion of the emitting body. That is, light in vacuum propagates with the c in at least one system of inertial coordinates. Following Einsteins original presentation of special relativity in 1905, many different sets of postulates have been proposed in various alternative derivations, however, the most common set of postulates remains those employed by Einstein in his original paper
25.
General relativity
–
General relativity is the geometric theory of gravitation published by Albert Einstein in 1915 and the current description of gravitation in modern physics. General relativity generalizes special relativity and Newtons law of gravitation, providing a unified description of gravity as a geometric property of space and time. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter, the relation is specified by the Einstein field equations, a system of partial differential equations. Examples of such differences include gravitational time dilation, gravitational lensing, the redshift of light. The predictions of relativity have been confirmed in all observations. Although general relativity is not the only theory of gravity. Einsteins theory has important astrophysical implications, for example, it implies the existence of black holes—regions of space in which space and time are distorted in such a way that nothing, not even light, can escape—as an end-state for massive stars. The bending of light by gravity can lead to the phenomenon of gravitational lensing, General relativity also predicts the existence of gravitational waves, which have since been observed directly by physics collaboration LIGO. In addition, general relativity is the basis of current cosmological models of an expanding universe. Soon after publishing the special theory of relativity in 1905, Einstein started thinking about how to incorporate gravity into his new relativistic framework. In 1907, beginning with a thought experiment involving an observer in free fall. After numerous detours and false starts, his work culminated in the presentation to the Prussian Academy of Science in November 1915 of what are now known as the Einstein field equations. These equations specify how the geometry of space and time is influenced by whatever matter and radiation are present, the Einstein field equations are nonlinear and very difficult to solve. Einstein used approximation methods in working out initial predictions of the theory, but as early as 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the Schwarzschild metric. This solution laid the groundwork for the description of the stages of gravitational collapse. In 1917, Einstein applied his theory to the universe as a whole, in line with contemporary thinking, he assumed a static universe, adding a new parameter to his original field equations—the cosmological constant—to match that observational presumption. By 1929, however, the work of Hubble and others had shown that our universe is expanding and this is readily described by the expanding cosmological solutions found by Friedmann in 1922, which do not require a cosmological constant. Lemaître used these solutions to formulate the earliest version of the Big Bang models, in which our universe has evolved from an extremely hot, Einstein later declared the cosmological constant the biggest blunder of his life
26.
Non-Euclidean
–
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. In the latter case one obtains hyperbolic geometry and elliptic geometry, when the metric requirement is relaxed, then there are affine planes associated with the planar algebras which give rise to kinematic geometries that have also been called non-Euclidean geometry. The essential difference between the geometries is the nature of parallel lines. In hyperbolic geometry, by contrast, there are many lines through A not intersecting ℓ, while in elliptic geometry. In elliptic geometry the lines curve toward each other and intersect, the debate that eventually led to the discovery of the non-Euclidean geometries began almost as soon as Euclids work Elements was written. In the Elements, Euclid began with a number of assumptions. Other mathematicians have devised simpler forms of this property, regardless of the form of the postulate, however, it consistently appears to be more complicated than Euclids other postulates,1. To draw a line from any point to any point. To produce a straight line continuously in a straight line. To describe a circle with any centre and distance and that all right angles are equal to one another. For at least a thousand years, geometers were troubled by the complexity of the fifth postulate. Many attempted to find a proof by contradiction, including Ibn al-Haytham, Omar Khayyám, Nasīr al-Dīn al-Tūsī and these theorems along with their alternative postulates, such as Playfairs axiom, played an important role in the later development of non-Euclidean geometry. These early attempts did, however, provide some early properties of the hyperbolic and elliptic geometries. Another example is al-Tusis son, Sadr al-Din, who wrote a book on the subject in 1298, based on al-Tusis later thoughts and he essentially revised both the Euclidean system of axioms and postulates and the proofs of many propositions from the Elements. His work was published in Rome in 1594 and was studied by European geometers and he finally reached a point where he believed that his results demonstrated the impossibility of hyperbolic geometry. His claim seems to have based on Euclidean presuppositions, because no logical contradiction was present. In this attempt to prove Euclidean geometry he instead unintentionally discovered a new viable geometry, in 1766 Johann Lambert wrote, but did not publish, Theorie der Parallellinien in which he attempted, as Saccheri did, to prove the fifth postulate. He worked with a figure that today we call a Lambert quadrilateral and he quickly eliminated the possibility that the fourth angle is obtuse, as had Saccheri and Khayyam, and then proceeded to prove many theorems under the assumption of an acute angle
27.
H. S. M. Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M
28.
The Time Machine
–
The Time Machine is a science fiction novel by H. G. Wells, published in 1895 and written as a frame narrative. Wells is generally credited with the popularization of the concept of travel by using a vehicle that allows an operator to travel purposely and selectively forwards or backwards in time. The term time machine, coined by Wells, is now almost universally used to refer to such a vehicle, the Time Machine has been adapted into three feature films of the same name, as well as two television versions, and a large number of comic book adaptations. It has also inspired many more works of fiction in many media productions. Wells had considered the notion of travel before, in a short story titled The Chronic Argonauts. This work, published in his newspaper, was the foundation for The Time Machine. Wells readily agreed and was paid £100 on its publication by Heinemann in 1895, henry Holt and Company published the first book edition on 7 May 1895, Heinemann published an English edition on 29 May. These two editions are different textually and are referred to as the Holt text and Heinemann text. Nearly all modern reprints reproduce the Heinemann text, the story reflects Wellss own socialist political views, his view on life and abundance, and the contemporary angst about industrial relations. It is also influenced by Ray Lankesters theories about social degeneration and shares many elements with Edward Bulwer-Lyttons novel Vril, other science fiction works of the period, including Edward Bellamys novel Looking Backward, 2000-1887 and the later film Metropolis, dealt with similar themes. This work is an example of the Dying Earth subgenre. The books protagonist is an English scientist and gentleman inventor living in Richmond, Surrey, in Victorian England, the narrator recounts the Travellers lecture to his weekly dinner guests that time is simply a fourth dimension and his demonstration of a tabletop model machine for travelling through it. He reveals that he has built a machine capable of carrying a person through time, and returns at dinner the following week to recount a remarkable tale, becoming the new narrator. In the new narrative, the Time Traveller tests his device with a journey takes him to A. D.802,701, where he meets the Eloi. They live in communities within large and futuristic yet slowly deteriorating buildings, doing no work. Luckily, he had removed the machines levers before leaving it, later in the dark, he is approached menacingly by the Morlocks, ape-like troglodytes who live in darkness underground and surface only at night. Within their dwellings, he discovers the machinery and industry that makes the above-ground paradise possible, deducing that the Morlocks have taken his time machine, he explores the Morlock tunnels, learning that due to a lack of any other means of sustenance, they feed on the Eloi. His revised analysis is that their relationship is not one of lords and servants but of livestock and he plans to take Weena back to his own time
29.
Space (mathematics)
–
In mathematics, a space is a set with some added structure. Mathematical spaces often form a hierarchy, i. e. one space may inherit all the characteristics of a parent space, modern mathematics treats space quite differently compared to classical mathematics. In the ancient mathematics, space was an abstraction of the three-dimensional space observed in the everyday life. The axiomatic method had been the research tool since Euclid. The method of coordinates was adopted by René Descartes in 1637, two equivalence relations between geometric figures were used, congruence and similarity. Translations, rotations and reflections transform a figure into congruent figures, homotheties — into similar figures, for example, all circles are mutually similar, but ellipses are not similar to circles. The relation between the two geometries, Euclidean and projective, shows that objects are not given to us with their structure. Rather, each mathematical theory describes its objects by some of their properties, distances and angles are never mentioned in the axioms of the projective geometry and therefore cannot appear in its theorems. The question what is the sum of the three angles of a triangle is meaningful in the Euclidean geometry but meaningless in the projective geometry. A different situation appeared in the 19th century, in some geometries the sum of the three angles of a triangle is well-defined but different from the classical value. The non-Euclidean hyperbolic geometry, introduced by Nikolai Lobachevsky in 1829, eugenio Beltrami in 1868 and Felix Klein in 1871 obtained Euclidean models of the non-Euclidean hyperbolic geometry, and thereby completely justified this theory. This discovery forced the abandonment of the pretensions to the truth of Euclidean geometry. It showed that axioms are not obvious, nor implications of definitions, to what extent do they correspond to an experimental reality. This important physical problem no longer has anything to do with mathematics, even if a geometry does not correspond to an experimental reality, its theorems remain no less mathematical truths. These Euclidean objects and relations play the non-Euclidean geometry like contemporary actors playing an ancient performance, relations between the actors only mimic relations between the characters in the play. Likewise, the relations between the chosen objects of the Euclidean model only mimic the non-Euclidean relations. It shows that relations between objects are essential in mathematics, while the nature of the objects is not, according to Nicolas Bourbaki, the period between 1795 and 1872 can be called the golden age of geometry. Analytic geometry made a progress and succeeded in replacing theorems of classical geometry with computations via invariants of transformation groups
30.
Point (geometry)
–
In modern mathematics, a point refers usually to an element of some set called a space. More specifically, in Euclidean geometry, a point is a primitive notion upon which the geometry is built, being a primitive notion means that a point cannot be defined in terms of previously defined objects. That is, a point is defined only by some properties, called axioms, in particular, the geometric points do not have any length, area, volume, or any other dimensional attribute. A common interpretation is that the concept of a point is meant to capture the notion of a location in Euclidean space. Points, considered within the framework of Euclidean geometry, are one of the most fundamental objects, Euclid originally defined the point as that which has no part. This idea is easily generalized to three-dimensional Euclidean space, where a point is represented by a triplet with the additional third number representing depth. Further generalizations are represented by an ordered tuplet of n terms, many constructs within Euclidean geometry consist of an infinite collection of points that conform to certain axioms. This is usually represented by a set of points, As an example, a line is a set of points of the form L =. Similar constructions exist that define the plane, line segment and other related concepts, a line segment consisting of only a single point is called a degenerate line segment. In addition to defining points and constructs related to points, Euclid also postulated a key idea about points, in spite of this, modern expansions of the system serve to remove these assumptions. There are several inequivalent definitions of dimension in mathematics, in all of the common definitions, a point is 0-dimensional. The dimension of a space is the maximum size of a linearly independent subset. In a vector space consisting of a point, there is no linearly independent subset. The zero vector is not itself linearly independent, because there is a non trivial linear combination making it zero,1 ⋅0 =0, if no such minimal n exists, the space is said to be of infinite covering dimension. A point is zero-dimensional with respect to the covering dimension because every open cover of the space has a refinement consisting of a open set. The Hausdorff dimension of X is defined by dim H , = inf, a point has Hausdorff dimension 0 because it can be covered by a single ball of arbitrarily small radius. Although the notion of a point is considered fundamental in mainstream geometry and topology, there are some systems that forgo it, e. g. noncommutative geometry. More precisely, such structures generalize well-known spaces of functions in a way that the operation take a value at this point may not be defined
31.
Euclidean vector
–
In mathematics, physics, and engineering, a Euclidean vector is a geometric object that has magnitude and direction. Vectors can be added to other vectors according to vector algebra, a Euclidean vector is frequently represented by a line segment with a definite direction, or graphically as an arrow, connecting an initial point A with a terminal point B, and denoted by A B →. A vector is what is needed to carry the point A to the point B and it was first used by 18th century astronomers investigating planet rotation around the Sun. The magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from A to B. These operations and associated laws qualify Euclidean vectors as an example of the more generalized concept of vectors defined simply as elements of a vector space. Vectors play an important role in physics, the velocity and acceleration of a moving object, many other physical quantities can be usefully thought of as vectors. Although most of them do not represent distances, their magnitude and direction can still be represented by the length, the mathematical representation of a physical vector depends on the coordinate system used to describe it. Other vector-like objects that describe physical quantities and transform in a similar way under changes of the system include pseudovectors and tensors. The concept of vector, as we know it today, evolved gradually over a period of more than 200 years, about a dozen people made significant contributions. Giusto Bellavitis abstracted the basic idea in 1835 when he established the concept of equipollence, working in a Euclidean plane, he made equipollent any pair of line segments of the same length and orientation. Essentially he realized an equivalence relation on the pairs of points in the plane, the term vector was introduced by William Rowan Hamilton as part of a quaternion, which is a sum q = s + v of a Real number s and a 3-dimensional vector. Like Bellavitis, Hamilton viewed vectors as representative of classes of equipollent directed segments, grassmanns work was largely neglected until the 1870s. Peter Guthrie Tait carried the standard after Hamilton. His 1867 Elementary Treatise of Quaternions included extensive treatment of the nabla or del operator ∇, in 1878 Elements of Dynamic was published by William Kingdon Clifford. Clifford simplified the quaternion study by isolating the dot product and cross product of two vectors from the complete quaternion product and this approach made vector calculations available to engineers and others working in three dimensions and skeptical of the fourth. Josiah Willard Gibbs, who was exposed to quaternions through James Clerk Maxwells Treatise on Electricity and Magnetism, the first half of Gibbss Elements of Vector Analysis, published in 1881, presents what is essentially the modern system of vector analysis. In 1901 Edwin Bidwell Wilson published Vector Analysis, adapted from Gibbs lectures, in physics and engineering, a vector is typically regarded as a geometric entity characterized by a magnitude and a direction. It is formally defined as a line segment, or arrow
32.
Standard basis
–
In mathematics, the standard basis for a Euclidean space is the set of unit vectors pointing in the direction of the axes of a Cartesian coordinate system. For example, the basis for the Euclidean plane is formed by vectors e x =, e y =. Here the vector ex points in the x direction, the vector ey points in the y direction, there are several common notations for these vectors, including, and. These vectors are written with a hat to emphasize their status as unit vectors. Each of these vectors is sometimes referred to as the versor of the corresponding Cartesian axis and these vectors are a basis in the sense that any other vector can be expressed uniquely as a linear combination of these. For example, every vector v in three-dimensional space can be written uniquely as v x e x + v y e y + v z e z, the scalars vx, vy, vz being the scalar components of the vector v. In n -dimensional Euclidean space, the standard consists of n distinct vectors. Standard bases can be defined for vector spaces, such as polynomials. In both cases, the standard consists of the elements of the vector space such that all coefficients but one are 0. For polynomials, the standard basis consists of the monomials and is commonly called monomial basis. For matrices M m × n, the standard consists of the m×n-matrices with exactly one non-zero entry. For example, the basis for 2×2 matrices is formed by the 4 matrices e 11 =, e 12 =, e 21 =, e 22 =. By definition, the basis is a sequence of orthogonal unit vectors. In other words, it is an ordered and orthonormal basis, however, an ordered orthonormal basis is not necessarily a standard basis. For instance the two vectors representing a 30° rotation of the 2D standard basis described above, i. e, there is a standard basis also for the ring of polynomials in n indeterminates over a field, namely the monomials. This family is the basis of the R-module R of all families f = from I into a ring R, which are zero except for a finite number of indices, if we interpret 1 as 1R. The existence of standard bases has become a topic of interest in algebraic geometry. It is now a part of theory called standard monomial theory
33.
Dot product
–
In mathematics, the dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers and returns a single number. Sometimes it is called inner product in the context of Euclidean space, algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, it is the product of the Euclidean magnitudes of the two vectors and the cosine of the angle between them, the dot product may be defined algebraically or geometrically. The geometric definition is based on the notions of angle and distance, the equivalence of these two definitions relies on having a Cartesian coordinate system for Euclidean space. In such a presentation, the notions of length and angles are not primitive, so the equivalence of the two definitions of the dot product is a part of the equivalence of the classical and the modern formulations of Euclidean geometry. For instance, in space, the dot product of vectors and is. In Euclidean space, a Euclidean vector is an object that possesses both a magnitude and a direction. A vector can be pictured as an arrow and its magnitude is its length, and its direction is the direction that the arrow points. The magnitude of a vector a is denoted by ∥ a ∥, the dot product of two Euclidean vectors a and b is defined by a ⋅ b = ∥ a ∥ ∥ b ∥ cos , where θ is the angle between a and b. In particular, if a and b are orthogonal, then the angle between them is 90° and a ⋅ b =0. The scalar projection of a Euclidean vector a in the direction of a Euclidean vector b is given by a b = ∥ a ∥ cos θ, where θ is the angle between a and b. In terms of the definition of the dot product, this can be rewritten a b = a ⋅ b ^. The dot product is thus characterized geometrically by a ⋅ b = a b ∥ b ∥ = b a ∥ a ∥. The dot product, defined in this manner, is homogeneous under scaling in each variable and it also satisfies a distributive law, meaning that a ⋅ = a ⋅ b + a ⋅ c. These properties may be summarized by saying that the dot product is a bilinear form, moreover, this bilinear form is positive definite, which means that a ⋅ a is never negative and is zero if and only if a =0. En are the basis vectors in Rn, then we may write a = = ∑ i a i e i b = = ∑ i b i e i. The vectors ei are a basis, which means that they have unit length and are at right angles to each other. Hence since these vectors have unit length e i ⋅ e i =1 and since they form right angles with each other, thus in general we can say that, e i ⋅ e j = δ i j
34.
Norm (mathematics)
–
A seminorm, on the other hand, is allowed to assign zero length to some non-zero vectors. A norm must also satisfy certain properties pertaining to scalability and additivity which are given in the definition below. A simple example is the 2-dimensional Euclidean space R2 equipped with the Euclidean norm, elements in this vector space are usually drawn as arrows in a 2-dimensional cartesian coordinate system starting at the origin. The Euclidean norm assigns to each vector the length of its arrow, because of this, the Euclidean norm is often known as the magnitude. A vector space on which a norm is defined is called a vector space. Similarly, a space with a seminorm is called a seminormed vector space. It is often possible to supply a norm for a vector space in more than one way. If p =0 then v is the zero vector, by the first axiom, absolute homogeneity, we have p =0 and p = p, so that by the triangle inequality p ≥0. A seminorm on V is a p, V → R with the properties 1. and 2. Every vector space V with seminorm p induces a normed space V/W, called the quotient space, the induced norm on V/W is clearly well-defined and is given by, p = p. A topological vector space is called if the topology of the space can be induced by a norm. If a norm p, V → R is given on a vector space V then the norm of a vector v ∈ V is usually denoted by enclosing it within double vertical lines, such notation is also sometimes used if p is only a seminorm. For the length of a vector in Euclidean space, the notation | v | with single vertical lines is also widespread, in Unicode, the codepoint of the double vertical line character ‖ is U+2016. The double vertical line should not be confused with the parallel to symbol and this is usually not a problem because the former is used in parenthesis-like fashion, whereas the latter is used as an infix operator. The double vertical line used here should not be confused with the symbol used to denote lateral clicks. The single vertical line | is called vertical line in Unicode, the trivial seminorm has p =0 for all x in V. Every linear form f on a vector space defines a seminorm by x → | f |, the absolute value ∥ x ∥ = | x | is a norm on the one-dimensional vector spaces formed by the real or complex numbers. The absolute value norm is a case of the L1 norm
35.
Angle
–
In planar geometry, an angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane, Angles are also formed by the intersection of two planes in Euclidean and other spaces. Angles formed by the intersection of two curves in a plane are defined as the angle determined by the tangent rays at the point of intersection. Similar statements hold in space, for example, the angle formed by two great circles on a sphere is the dihedral angle between the planes determined by the great circles. Angle is also used to designate the measure of an angle or of a rotation and this measure is the ratio of the length of a circular arc to its radius. In the case of an angle, the arc is centered at the vertex. In the case of a rotation, the arc is centered at the center of the rotation and delimited by any other point and its image by the rotation. The word angle comes from the Latin word angulus, meaning corner, cognate words are the Greek ἀγκύλος, meaning crooked, curved, both are connected with the Proto-Indo-European root *ank-, meaning to bend or bow. Euclid defines a plane angle as the inclination to each other, in a plane, according to Proclus an angle must be either a quality or a quantity, or a relationship. In mathematical expressions, it is common to use Greek letters to serve as variables standing for the size of some angle, lower case Roman letters are also used, as are upper case Roman letters in the context of polygons. See the figures in this article for examples, in geometric figures, angles may also be identified by the labels attached to the three points that define them. For example, the angle at vertex A enclosed by the rays AB, sometimes, where there is no risk of confusion, the angle may be referred to simply by its vertex. However, in geometrical situations it is obvious from context that the positive angle less than or equal to 180 degrees is meant. Otherwise, a convention may be adopted so that ∠BAC always refers to the angle from B to C. Angles smaller than an angle are called acute angles. An angle equal to 1/4 turn is called a right angle, two lines that form a right angle are said to be normal, orthogonal, or perpendicular. Angles larger than an angle and smaller than a straight angle are called obtuse angles. An angle equal to 1/2 turn is called a straight angle, Angles larger than a straight angle but less than 1 turn are called reflex angles
36.
Cross product
–
In mathematics and vector algebra, the cross product or vector product is a binary operation on two vectors in three-dimensional space and is denoted by the symbol ×. Given two linearly independent vectors a and b, the product, a × b, is a vector that is perpendicular to both a and b and therefore normal to the plane containing them. It has many applications in mathematics, physics, engineering, and it should not be confused with dot product. If two vectors have the direction or if either one has zero length, then their cross product is zero. The cross product is anticommutative and is distributive over addition, the space R3 together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket. Like the dot product, it depends on the metric of Euclidean space, but if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions. If one adds the further requirement that the product be uniquely defined, the cross product of two vectors a and b is defined only in three-dimensional space and is denoted by a × b. In physics, sometimes the notation a ∧ b is used, if the vectors a and b are parallel, by the above formula, the cross product of a and b is the zero vector 0. Then, the n is coming out of the thumb. Using this rule implies that the cross-product is anti-commutative, i. e. b × a = −. By pointing the forefinger toward b first, and then pointing the finger toward a. Using the cross product requires the handedness of the system to be taken into account. If a left-handed coordinate system is used, the direction of the n is given by the left-hand rule. This, however, creates a problem because transforming from one arbitrary reference system to another, the problem is clarified by realizing that the cross product of two vectors is not a vector, but rather a pseudovector. See cross product and handedness for more detail, in 1881, Josiah Willard Gibbs, and independently Oliver Heaviside, introduced both the dot product and the cross product using a period and an x, respectively, to denote them. These alternative names are widely used in the literature. Both the cross notation and the cross product were possibly inspired by the fact that each scalar component of a × b is computed by multiplying non-corresponding components of a and b. Conversely, a dot product a ⋅ b involves multiplications between corresponding components of a and b, as explained below, the cross product can be expressed in the form of a determinant of a special 3 ×3 matrix