1.
Personal computer
–
A personal computer is a multi-purpose electronic computer whose size, capabilities, and price make it feasible for individual use. PCs are intended to be operated directly by a end-user, rather than by an expert or technician. In the 2010s, PCs are typically connected to the Internet, allowing access to the World Wide Web, personal computers may be connected to a local area network, either by a cable or a wireless connection. In the 2010s, a PC may be, a multi-component desktop computer, designed for use in a location a laptop computer, designed for easy portability or a tablet computer. In the 2010s, PCs run using a system, such as Microsoft Windows, Linux. The very earliest microcomputers, equipped with a front panel, required hand-loading of a program to load programs from external storage. Before long, automatic booting from permanent read-only memory became universal, in the 2010s, users have access to a wide range of commercial software, free software and free and open-source software, which are provided in ready-to-run or ready-to-compile form. Since the early 1990s, Microsoft operating systems and Intel hardware have dominated much of the computer market, first with MS-DOS. Alternatives to Microsofts Windows operating systems occupy a minority share of the industry and these include Apples OS X and free open-source Unix-like operating systems such as Linux and Berkeley Software Distribution. Advanced Micro Devices provides the alternative to Intels processors. PC is an initialism for personal computer, some PCs, including the OLPC XOs, are equipped with x86 or x64 processors but not designed to run Microsoft Windows. PC is used in contrast with Mac, an Apple Macintosh computer and this sense of the word is used in the Get a Mac advertisement campaign that ran between 2006 and 2009, as well as its rival, Im a PC campaign, that appeared in 2008. Since Apples transition to Intel processors starting 2005, all Macintosh computers are now PCs, the “brain” may one day come down to our level and help with our income-tax and book-keeping calculations. But this is speculation and there is no sign of it so far, in the history of computing there were many examples of computers designed to be used by one person, as opposed to terminals connected to mainframe computers. Using the narrow definition of operated by one person, the first personal computer was the ENIAC which became operational in 1946 and it did not meet further definitions of affordable or easy to use. An example of an early single-user computer was the LGP-30, created in 1956 by Stan Frankel and used for science and it came with a retail price of $47, 000—equivalent to about $414,000 today. Introduced at the 1965 New York Worlds Fair, the Programma 101 was a programmable calculator described in advertisements as a desktop computer. It was manufactured by the Italian company Olivetti and invented by the Italian engineer Pier Giorgio Perotto, the Soviet MIR series of computers was developed from 1965 to 1969 in a group headed by Victor Glushkov

2.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n

3.
Partition (number theory)
–
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition, a summand in a partition is also called a part. The number of partitions of n is given by the function p. The notation λ ⊢ n means that λ is a partition of n, Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials, the symmetric group and in group representation theory in general. For example, the partition 2 +2 +1 might instead be written as the tuple or in the more compact form where the superscript indicates the number of repetitions of a term. There are two common methods to represent partitions, as Ferrers diagrams, named after Norman Macleod Ferrers. Both have several possible conventions, here, we use English notation, with diagrams aligned in the upper-left corner. The partition 6 +4 +3 +1 of the positive number 14 can be represented by the diagram, The 14 circles are lined up in 4 rows. The diagrams for the 5 partitions of the number 4 are listed below, rather than representing a partition with dots, as in the Ferrers diagram, the Young diagram uses boxes or squares. As a type of shape made by adjacent squares joined together, by convention p =1, p =0 for n negative. The first few values of the function are,1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,1575,1958,2436,3010,3718,4565,5604. As of June 2013, the largest known prime number that counts a number of partitions is p, the generating function for p is given by, ∑ n =0 ∞ p x n = ∏ k =1 ∞. Expanding each factor on the side as a geometric series. The xn term in this product counts the number of ways to write n = a1 + 2a2 + 3a3 +, where each number i appears ai times. This is precisely the definition of a partition of n, so our product is the generating function. More generally, the function for the partitions of n into numbers from a set A can be found by taking only those terms in the product where k is an element of A. This result is due to Euler, the formulation of Eulers generating function is a special case of a q-Pochhammer symbol and is similar to the product formulation of many modular forms, and specifically the Dedekind eta function

4.
Pell number
–
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1,2,5,12, and 29. The numerators of the sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers, these numbers form a second infinite sequence that begins with 2,6,14,34. As with Pells equation, the name of the Pell numbers stems from Leonhard Eulers mistaken attribution of the equation, the Pell–Lucas numbers are also named after Édouard Lucas, who studied sequences defined by recurrences of this type, the Pell and companion Pell numbers are Lucas sequences. The Pell numbers are defined by the recurrence relation P n = {0 if n =0,1 if n =1,2 P n −1 + P n −2 otherwise. In words, the sequence of Pell numbers starts with 0 and 1, and then each Pell number is the sum of twice the previous Pell number and the Pell number before that. The first few terms of the sequence are 0,1,2,5,12,29,70,169,408,985,2378,5741,13860, …. The Pell numbers can also be expressed by the closed form formula P n = n − n 22, a third definition is possible, from the matrix formula = n. Pell numbers arise historically and most notably in the rational approximation to √2. If two large integers x and y form a solution to the Pell equation x 2 −2 y 2 = ±1 and that is, the solutions have the form P n −1 + P n P n. The approximation 2 ≈577408 of this type was known to Indian mathematicians in the third or fourth century B. C, the Greek mathematicians of the fifth century B. C. also knew of this sequence of approximations, Plato refers to the numerators as rational diameters. In the 2nd century CE Theon of Smyrna used the term the side and these approximations can be derived from the continued fraction expansion of 2,2 =1 +12 +12 +12 +12 +12 + ⋱. As Knuth describes, the fact that Pell numbers approximate √2 allows them to be used for accurate rational approximations to an octagon with vertex coordinates. All vertices are equally distant from the origin, and form uniform angles around the origin. Alternatively, the points, and form approximate octagons in which the vertices are equally distant from the origin. A Pell prime is a Pell number that is prime, the first few Pell primes are 2,5,29,5741, …. The indices of these primes within the sequence of all Pell numbers are 2,3,5,11,13,29,41,53,59,89,97,101,167,181,191, … These indices are all themselves prime. As with the Fibonacci numbers, a Pell number Pn can only be prime if n itself is prime, the only Pell numbers that are squares, cubes, or any higher power of an integer are 0,1, and 169 =132. However, despite having so few squares or other powers, Pell numbers have a connection to square triangular numbers