1.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

2.
Uniform polyhedron
–
A uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent, Uniform polyhedra may be regular, quasi-regular or semi-regular. The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra, there are two infinite classes of uniform polyhedra together with 75 others. Dual polyhedra to uniform polyhedra are face-transitive and have regular vertex figures, the dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a case of the concept of uniform polytope. Coxeter, Longuet-Higgins & Miller define uniform polyhedra to be vertex-transitive polyhedra with regular faces, by a polygon they implicitly mean a polygon in 3-dimensional Euclidean space, these are allowed to be non-convex and to intersect each other. There are some generalizations of the concept of a uniform polyhedron, if the connectedness assumption is dropped, then we get uniform compounds, which can be split as a union of polyhedra, such as the compound of 5 cubes. If we drop the condition that the realization of the polyhedron is non-degenerate and these require a more general definition of polyhedra. Some of the ways they can be degenerate are as follows, some polyhedra have faces that are hidden, in the sense that no points of their interior can be seen from the outside. These are usually not counted as uniform polyhedra, some polyhedra have multiple edges and their faces are the faces of two or more polyhedra, though these are not compounds in the previous sense since the polyhedra share edges. There are some non-orientable polyhedra that have double covers satisfying the definition of a uniform polyhedron, there double covers have doubled faces, edges and vertices. They are usually not counted as uniform polyhedra, there are several polyhedra with doubled faces produced by Wythoffs construction. Most authors do not allow doubled faces and remove them as part of the construction, skillings figure has the property that it has double edges but its faces cannot be written as a union of two uniform polyhedra. Regular convex polyhedra, The Platonic solids date back to the classical Greeks and were studied by the Pythagoreans, Plato, Theaetetus, Timaeus of Locri, the Etruscans discovered the regular dodecahedron before 500 BC. Nonregular uniform convex polyhedra, The cuboctahedron was known by Plato, Archimedes discovered all of the 13 Archimedean solids. His original book on the subject was lost, but Pappus of Alexandria mentioned Archimedes listed 13 polyhedra, piero della Francesca rediscovered the five truncation of the Platonic solids, truncated tetrahedron, truncated octahedron, truncated cube, truncated dodecahedron, and truncated icosahedron. Luca Pacioli republished Francescas work in De divina proportione in 1509, adding the rhombicuboctahedron, calling it a icosihexahedron for its 26 faces, which was drawn by Leonardo da Vinci. Johannes Kepler was the first to publish the complete list of Archimedean solids, in 1619, regular star polyhedra, Kepler discovered two of the regular Kepler–Poinsot polyhedra and Louis Poinsot discovered the other two

3.
Uniform star polyhedron
–
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting, each polyhedron can contain either star polygon faces, star polygon vertex figures or both. The complete set of 57 nonprismatic uniform star polyhedra includes the 4 regular ones, called the Kepler–Poinsot polyhedra,5 quasiregular ones, there are also two infinite sets of uniform star prisms and uniform star antiprisms. The nonconvex forms are constructed from Schwarz triangles, all the uniform polyhedra are listed below by their symmetry groups and subgrouped by their vertex arrangements. Regular polyhedra are labeled by their Schläfli symbol, other nonregular uniform polyhedra are listed with their vertex configuration or their Uniform polyhedron index U. Note, For nonconvex forms below an additional descriptor Nonuniform is used when the convex hull vertex arrangement has same topology as one of these, for example an nonuniform cantellated form may have rectangles created in place of the edges rather than squares. There is one form, the tetrahemihexahedron which has tetrahedral symmetry. There are two Schwarz triangles that generate unique nonconvex uniform polyhedra, one triangle, and one general triangle. The general triangle generates the octahemioctahedron which is given further on with its octahedral symmetry. There are 8 convex forms, and 10 nonconvex forms with octahedral symmetry, there are four Schwarz triangles that generate nonconvex forms, two right triangles, and, and two general triangles. There are 8 convex forms and 46 nonconvex forms with icosahedral symmetry, some of the nonconvex snub forms have reflective vertex symmetry. Coxeter identified a number of star polyhedra by the Wythoff construction method. It is counted as a uniform polyhedron rather than a uniform polyhedron because of its double edges. Star polygon List of uniform polyhedra List of uniform polyhedra by Schwarz triangle Coxeter, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, a proof of the completeness on the list of elementary homogeneous polyhedra, Ukrainskiui Geometricheskiui Sbornik, 139–156, MR0326550 Skilling, J. The complete set of polyhedra, Philosophical Transactions of the Royal Society of London. Mathematical and Physical Sciences,278, 111–135, doi,10. 1098/rsta.1975.0022, ISSN 0080-4614, JSTOR74475, MR0365333 HarEl, zvi Har’El, Kaleido software, Images, dual images Mäder, R. E. Messer, Peter W. Closed-Form Expressions for Uniform Polyhedra and Their Duals

4.
Vertex figure
–
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off. Take some vertex of a polyhedron, mark a point somewhere along each connected edge. Draw lines across the faces, joining adjacent points. When done, these form a complete circuit, i. e. a polygon. This polygon is the vertex figure, more precise formal definitions can vary quite widely, according to circumstance. For example Coxeter varies his definition as convenient for the current area of discussion, most of the following definitions of a vertex figure apply equally well to infinite tilings, or space-filling tessellation with polytope cells. Make a slice through the corner of the polyhedron, cutting all the edges connected to the vertex. The cut surface is the vertex figure and this is perhaps the most common approach, and the most easily understood. Different authors make the slice in different places, Wenninger cuts each edge a unit distance from the vertex, as does Coxeter. For uniform polyhedra the Dorman Luke construction cuts each connected edge at its midpoint, other authors make the cut through the vertex at the other end of each edge. For irregular polyhedra, these approaches may produce a figure that does not lie in a plane. A more general approach, valid for convex polyhedra, is to make the cut along any plane which separates the given vertex from all the other vertices. Cromwell makes a cut or scoop, centered on the vertex. The cut surface or vertex figure is thus a spherical polygon marked on this sphere, many combinatorial and computational approaches treat a vertex figure as the ordered set of points of all the neighboring vertices to the given vertex. In the theory of polytopes, the vertex figure at a given vertex V comprises all the elements which are incident on the vertex, edges, faces. More formally it is the -section Fn/V, where Fn is the greatest face and this set of elements is elsewhere known as a vertex star. A vertex figure for an n-polytope is an -polytope, for example, a vertex figure for a polyhedron is a polygon figure, and the vertex figure for a 4-polytope is a polyhedron. Each edge of the vertex figure exists on or inside of a face of the original polytope connecting two vertices from an original face

5.
Polyhedron
–
In geometry, a polyhedron is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron, a convex polyhedron is the convex hull of finitely many points, not all on the same plane. Cubes and pyramids are examples of convex polyhedra, a polyhedron is a 3-dimensional example of the more general polytope in any number of dimensions. Convex polyhedra are well-defined, with several equivalent standard definitions, however, the formal mathematical definition of polyhedra that are not required to be convex has been problematic. Many definitions of polyhedron have been given within particular contexts, some more rigorous than others, some of these definitions exclude shapes that have often been counted as polyhedra or include shapes that are often not considered as valid polyhedra. As Branko Grünbaum observed, The Original Sin in the theory of polyhedra goes back to Euclid, the writers failed to define what are the polyhedra. Nevertheless, there is agreement that a polyhedron is a solid or surface that can be described by its vertices, edges, faces. Natural refinements of this definition require the solid to be bounded, to have a connected interior, and possibly also to have a connected boundary. However, the polyhedra defined in this way do not include the self-crossing star polyhedra, their faces may not form simple polygons, definitions based on the idea of a bounding surface rather than a solid are also common. If a planar part of such a surface is not itself a convex polygon, ORourke requires it to be subdivided into smaller convex polygons, cromwell gives a similar definition but without the restriction of three edges per vertex. Again, this type of definition does not encompass the self-crossing polyhedra, however, there exist topological polyhedra that cannot be realized as acoptic polyhedra. One modern approach is based on the theory of abstract polyhedra and these can be defined as partially ordered sets whose elements are the vertices, edges, and faces of a polyhedron. A vertex or edge element is less than an edge or face element when the vertex or edge is part of the edge or face, additionally, one may include a special bottom element of this partial order and a top element representing the whole polyhedron. However, these requirements are relaxed, to instead require only that the sections between elements two levels apart from line segments. Geometric polyhedra, defined in other ways, can be described abstractly in this way, a realization of an abstract polyhedron is generally taken to be a mapping from the vertices of the abstract polyhedron to geometric points, such that the points of each face are coplanar. A geometric polyhedron can then be defined as a realization of an abstract polyhedron, realizations that forgo the requirement of planarity, that impose additional requirements of symmetry, or that map the vertices to higher dimensional spaces have also been considered. Unlike the solid-based and surface-based definitions, this perfectly well for star polyhedra. However, without restrictions, this definition allows degenerate or unfaithful polyhedra

6.
Harold Scott MacDonald Coxeter
–
Harold Scott MacDonald Donald Coxeter, FRS, FRSC, CC was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century and he was born in London but spent most of his adult life in Canada. He was always called Donald, from his third name MacDonald, in his youth, Coxeter composed music and was an accomplished pianist at the age of 10. He felt that mathematics and music were intimately related, outlining his ideas in a 1962 article on Mathematics and he worked for 60 years at the University of Toronto and published twelve books. He was most noted for his work on regular polytopes and higher-dimensional geometries and he was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra. Coxeter went up to Trinity College, Cambridge in 1926 to read mathematics, there he earned his BA in 1928, and his doctorate in 1931. In 1932 he went to Princeton University for a year as a Rockefeller Fellow, where he worked with Hermann Weyl, Oswald Veblen, returning to Trinity for a year, he attended Ludwig Wittgensteins seminars on the philosophy of mathematics. In 1934 he spent a year at Princeton as a Procter Fellow. In 1936 Coxeter moved to the University of Toronto, flather, and John Flinders Petrie published The Fifty-Nine Icosahedra with University of Toronto Press. In 1940 Coxeter edited the eleventh edition of Mathematical Recreations and Essays and he was elevated to professor in 1948. Coxeter was elected a Fellow of the Royal Society of Canada in 1948 and he also inspired some of the innovations of Buckminster Fuller. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller were the first to publish the full list of uniform polyhedra, since 1978, the Canadian Mathematical Society have awarded the Coxeter–James Prize in his honor. He was made a Fellow of the Royal Society in 1950, in 1990, he became a Foreign Member of the American Academy of Arts and Sciences and in 1997 was made a Companion of the Order of Canada. In 1973 he got the Jeffery–Williams Prize,1940, Regular and Semi-Regular Polytopes I, Mathematische Zeitschrift 46, 380-407, MR2,10 doi,10. 1007/BF011814491942, Non-Euclidean Geometry, University of Toronto Press, MAA. 1954, Uniform Polyhedra, Philosophical Transactions of the Royal Society A246, arthur Sherk, Peter McMullen, Anthony C. Thompson and Asia Ivić Weiss, editors, Kaleidoscopes — Selected Writings of H. S. M. John Wiley and Sons ISBN 0-471-01003-01999, The Beauty of Geometry, Twelve Essays, Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 Davis, Chandler, Ellers, Erich W, the Coxeter Legacy, Reflections and Projections. King of Infinite Space, Donald Coxeter, the Man Who Saved Geometry, www. donaldcoxeter. com www. math. yorku. ca/dcoxeter webpages dedicated to him Jarons World, Shapes in Other Dimensions, Discover mag. Apr 2007 The Mathematics in the Art of M. C, escher video of a lecture by H. S. M

7.
Wythoff symbol
–
In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra, a Wythoff symbol consists of three numbers and a vertical bar. It represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators, with a slight extension, Wythoffs symbol can be applied to all uniform polyhedra. However, the methods do not lead to all uniform tilings in euclidean or hyperbolic space. In three dimensions, Wythoffs construction begins by choosing a point on the triangle. If the distance of this point from each of the sides is non-zero, a perpendicular line is then dropped between the generator point and every face that it does not lie on. The three numbers in Wythoffs symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, the triangle is also represented with the same numbers, written. In this notation the mirrors are labeled by the reflection-order of the opposite vertex, the p, q, r values are listed before the bar if the corresponding mirror is active. The one impossible symbol | p q r implies the point is on all mirrors. This unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, the resulting figure has rotational symmetry only. The generator point can either be on or off each mirror and this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. A node is circled if the point is not on the mirror. There are seven generator points with each set of p, q, r, | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isnt Wythoff-constructible, There are 4 symmetry classes of reflection on the sphere, and two in the Euclidean plane. A few of the many such patterns in the hyperbolic plane are also listed. The list of Schwarz triangles includes rational numbers, and determine the set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a domain, colored by even. Selected tilings created by the Wythoff construction are given below, for a more complete list, including cases where r ≠2, see List of uniform polyhedra by Schwarz triangle

8.
Vertex arrangement
–
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes, for example, a square vertex arrangement is understood to mean four points in a plane, equal distance and angles from a center point. Two polytopes share the same vertex arrangement if they share the same 0-skeleton, the same set of vertices can be connected by edges in different ways. For example, the pentagon and pentagram have the same vertex arrangement, a vertex arrangement is often described by the convex hull polytope which contains it. For example, the regular pentagram can be said to have a vertex arrangement. Infinite tilings can also share common vertex arrangements, for example, this triangular lattice of points can be connected to form either isosceles triangles or rhombic faces. Polyhedra can also share an edge arrangement while differing in their faces, for example, of the ten nonconvex regular Schläfli-Hess polychora, there are only 7 unique face arrangements. Synonyms for special cases include company for a 2-regiment and army for a 0-regiment, n-skeleton - a set of elements of dimension n and lower in a higher polytope. Vertex figure - A local arrangement of faces in a polyhedron around a single vertex, archived from the original on 4 February 2007. Archived from the original on 4 February 2007, archived from the original on 4 February 2007

9.
Truncated dodecahedron
–
In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces,20 regular triangular faces,60 vertices and 90 edges and this polyhedron can be formed from a dodecahedron by truncating the corners so the pentagon faces become decagons and the corners become triangles. It is used in the cell-transitive hyperbolic space-filling tessellation, the bitruncated icosahedral honeycomb, the truncated dodecahedron has five special orthogonal projections, centered, on a vertex, on two types of edges, and two types of faces, hexagonal and pentagonal. The last two correspond to the A2 and H2 Coxeter planes, the truncated dodecahedron can also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. Schlegel diagrams are similar, with a projection and straight edges. In the mathematical field of theory, a truncated dodecahedral graph is the graph of vertices and edges of the truncated dodecahedron. It has 60 vertices and 90 edges, and is a cubic Archimedean graph, spinning truncated cube Cube-connected cycles, a family of graphs that includes the skeleton of the truncated cube Williams, Robert. The Geometrical Foundation of Natural Structure, A Source Book of Design, Eric W. Weisstein, Truncated dodecahedron at MathWorld. Weisstein, Eric W. Truncated dodecahedral graph, 3D convex uniform polyhedra o3x5x - tid. Editable printable net of a dodecahedron with interactive 3D view The Uniform Polyhedra Virtual Reality Polyhedra The Encyclopedia of Polyhedra

10.
Quadrilateral
–
In Euclidean plane geometry, a quadrilateral is a polygon with four edges and four vertices or corners. Sometimes, the quadrangle is used, by analogy with triangle. The origin of the quadrilateral is the two Latin words quadri, a variant of four, and latus, meaning side. Quadrilaterals are simple or complex, also called crossed, simple quadrilaterals are either convex or concave. The interior angles of a simple quadrilateral ABCD add up to 360 degrees of arc and this is a special case of the n-gon interior angle sum formula × 180°. All non-self-crossing quadrilaterals tile the plane by repeated rotation around the midpoints of their edges, any quadrilateral that is not self-intersecting is a simple quadrilateral. In a convex quadrilateral, all angles are less than 180°. Irregular quadrilateral or trapezium, no sides are parallel, trapezium or trapezoid, at least one pair of opposite sides are parallel. Isosceles trapezium or isosceles trapezoid, one pair of sides are parallel. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, parallelogram, a quadrilateral with two pairs of parallel sides. Equivalent conditions are that opposite sides are of length, that opposite angles are equal. In other words, parallelograms include all rhombi and all rhomboids, rhombus or rhomb, all four sides are of equal length. An equivalent condition is that the diagonals bisect each other. Rhomboid, a parallelogram in which adjacent sides are of unequal lengths, not all references agree, some define a rhomboid as a parallelogram which is not a rhombus. Rectangle, all four angles are right angles, an equivalent condition is that the diagonals bisect each other and are equal in length. Square, all four sides are of length, and all four angles are right angles. An equivalent condition is that opposite sides are parallel, that the diagonals bisect each other. A quadrilateral is a if and only if it is both a rhombus and a rectangle