Higher fullerenes

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Higher fullerenes are fullerene molecules consisting of more than 70 carbon atoms. They adopt cage-like structures made up of the fusion of hexagons and pentagons, with a carbon atom at the vertices of each polygon and a bond along each polygon edge. They are all black solids that dissolve sparingly in organic solvents to give deeply colored solutions.


Fullerenes are extracted from the specially prepared soot using organic solvents followed by chromatography.[1] Milligram amounts of higher fullerenes can be obtained with this method in the laboratory. According to the discovery of W. Krätchmer and D. R. Huffman the soot is produced from two high-purity graphite electrodes by igniting an arc discharge between them in an inert atmosphere (helium gas). Alternatively, soot is produced by laser ablation of graphite or pyrolysis of aromatic hydrocarbons.

C76, C78 and C84 are available commercially.


Formula CAS number[2] Nis[3] Symmetry[4][5]
C60 99685-96-8 1 Ih
C70 115383-22-7 1 D5h
C72 1 D6h
C74 1 D3h
C76 135113-15-4 2 D2*
C78 136316-32-0 5 D2v
C80 136316-32-0 7
C82 136316-32-0 9 C2, C2v, C3v
C84 135113-16-5 24 D2*, D2d
C86 135113-16-5 19
C88 135113-16-5 35
C90 135113-16-5 46
C3996 175833-78-0

In the table, Nis represents the number of possible isomers within the "isolated pentagon rule", which states that two pentagons in a fullerene should not share edges. Symmetry is specified for the most experimentally abundant form(s), and * marks symmetries with more than one chiral form.

Solid phases of higher fullerenes[6]
Formula Symmetry Space group No Pearson
a (nm) b (nm) c (nm) β° Z ρ (g/cm3)
C76 Monoclinic P21 4 mP2 1.102 1.108 1.768 108.10 2 1.48
C76 Cubic Fm3m 225 cF4 1.5475 1.5475 1.5475 90 4 1.64
C82 Monoclinic P21 4 mP2 1.141 1.1355 1.8355 108.07 2
C84 Cubic Fm3m 1.5817[7] 1.5817 1.5817 90

When C76 or C82 crystals are grown from toluene solution they have a monoclinic symmetry. The crystal structure contains toluene molecules packed between the spheres of the fullerene. However, evaporation of the solvent from C76 transforms it into a face-centered cubic form.[6] Both monoclinic and face-centered cubic (fcc) phases are known for better-characterized C60 and C70 fullerenes.


  1. ^ Katz, 369-370
  2. ^ W. L. F. Armarego; Christina Li Lin Chai (11 May 2009). Purification of laboratory chemicals. Butterworth-Heinemann. pp. 214–. ISBN 978-1-85617-567-8. Retrieved 26 December 2011. 
  3. ^ Manolopoulos, David E.; Fowler, Patrick W. (1991). "Structural proposals for endohedral metal-fullerene complexes". Chemical Physics Letters. 187: 1. doi:10.1016/0009-2614(91)90475-O. 
  4. ^ Diederich, Francois; Whetten, Robert L. (1992). "Beyond C60: The higher fullerenes". Accounts of Chemical Research. 25 (3): 119. doi:10.1021/ar00015a004. 
  5. ^ K Veera Reddy (1 January 1998). Symmetry And Spectroscopy Of Molecules. New Age International. pp. 126–. ISBN 978-81-224-1142-3. Retrieved 26 December 2011. 
  6. ^ a b Kawada, H.; Fujii, Y.; Nakao, H.; Murakami, Y.; Watanuki, T.; Suematsu, H.; Kikuchi, K.; Achiba, Y.; Ikemoto, I. (1995). "Structural aspects of C82 and C76 crystals studied by x-ray diffraction". Physical Review B. 51 (14): 8723. doi:10.1103/PhysRevB.51.8723. 
  7. ^ Margadonna, Serena; Brown, Craig M.; Dennis, T. John S.; Lappas, Alexandros; Pattison, Philip; Prassides, Kosmas; Shinohara, Hisanori (July 1998). "Crystal Structure of the Higher Fullerene C". Chemistry of Materials. 10 (7): 1742–1744. doi:10.1021/cm980183c. 


External links[edit]