1.
Kings Mountain, North Carolina
–
Kings Mountain is a small suburban city within the Charlotte metropolitan area in Cleveland and Gaston counties, North Carolina, United States. Most of the city is in Cleveland County, with an eastern portion in Gaston County. The population was 10,296 at the 2010 census, the battle of Kings Mountain, was a battle during the revolutionary war. Liberty Mountain, a play done in the theater, tells all about the battle. The downtown area is home to the museum and police station, originally the settlement was called White Plains, but when the city was incorporated in 1874, the name was changed. It was decided that Kings Mountain would be an appropriate name since the community was close to the historic Battle of Kings Mountain in York County. Kings Mountain is located at 35°14′39″N 81°20′33″W and it lies 30 miles west of Charlotte along Interstate 85. Gaffney, South Carolina, is 21 miles to the southwest along I-85. According to the United States Census Bureau, the city has an area of 12.6 square miles, of which 12.3 square miles is land and 0.23 square miles. As of the census of 2000, there were 9,693 people,3,821 households, the population density was 1,187.1 people per square mile. There were 4,064 housing units at a density of 497.7 per square mile. The racial makeup of the city was 74. 85% White,21. 55% black,0. 15% Native American,1. 81% Asian,0. 02% Pacific Islander,0. 63% from other races, and 0. 99% from two or more races. Hispanic or Latino of any race were 1. 43% of the population,26. 8% of all households were made up of individuals and 12. 6% had someone living alone who was 65 years of age or older. The average household size was 2.47 and the family size was 2.98. In the city, the population was out with 25. 3% under the age of 18,7. 4% from 18 to 24,27. 3% from 25 to 44,22. 4% from 45 to 64. The median age was 38 years, for every 100 females there were 85.9 males. For every 100 females age 18 and over, there were 80.4 males, the median income for a household in the city was $31,415, and the median income for a family was $39,137. Males had an income of $32,444 versus $22,201 for females

2.
Silicate minerals
–
Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of rock-forming minerals and they are classified based on the structure of their silicate groups, which contain different ratios of silicon and oxygen. Nesosilicates, or orthosilicates, have the orthosilicate ion, which constitute isolated 4− tetrahedra that are connected only by interstitial cations and these exist as 3-member 6− and 6-member 12− rings, where T stands for a tetrahedrally coordinated cation. Inosilicates, or chain silicates, have interlocking chains of silicate tetrahedra with either SiO3,1,3 ratio, for single chains or Si4O11,4,11 ratio, for double chains. Nickel–Strunz classification,09. D Pyroxene group Enstatite – orthoferrosilite series Enstatite – MgSiO3 Ferrosilite – FeSiO3 Pigeonite – Ca0.251, all phyllosilicate minerals are hydrated, with either water or hydroxyl groups attached. Serpentine subgroup Antigorite – Mg3Si2O54 Chrysotile – Mg3Si2O54 Lizardite – Mg3Si2O54 Clay minerals group Halloysite – Al2Si2O54 Kaolinite – Al2Si2O54 Illite – 24O10 Montmorillonite –0 and this group comprises nearly 75% of the crust of the Earth. Tectosilicates, with the exception of the group, are aluminosilicates. Nickel–Strunz classification,09. F and 09. G,04. A, an introduction to the rock-forming minerals. Wise, W. S. Zussman, J. Rock-forming minerals, P.982 pp. Hurlbut, Cornelius S. Danas Manual of Mineralogy. Mindat. org, Dana classification Webmineral, Danas New Silicate Classification Media related to Silicates at Wikimedia Commons

3.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH

4.
Crystal system
–
In crystallography, the terms crystal system, crystal family and lattice system each refer to one of several classes of space groups, lattices, point groups or crystals. Informally, two crystals are in the crystal system if they have similar symmetries, though there are many exceptions to this. Space groups and crystals are divided into seven crystal systems according to their point groups, five of the crystal systems are essentially the same as five of the lattice systems, but the hexagonal and trigonal crystal systems differ from the hexagonal and rhombohedral lattice systems. The six crystal families are formed by combining the hexagonal and trigonal crystal systems into one hexagonal family, a lattice system is a class of lattices with the same set of lattice point groups, which are subgroups of the arithmetic crystal classes. The 14 Bravais lattices are grouped into seven lattice systems, triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, in a crystal system, a set of point groups and their corresponding space groups are assigned to a lattice system. Of the 32 point groups that exist in three dimensions, most are assigned to only one system, in which case both the crystal and lattice systems have the same name. However, five point groups are assigned to two systems, rhombohedral and hexagonal, because both exhibit threefold rotational symmetry. These point groups are assigned to the crystal system. In total there are seven crystal systems, triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, a crystal family is determined by lattices and point groups. It is formed by combining crystal systems which have space groups assigned to a lattice system. In three dimensions, the families and systems are identical, except the hexagonal and trigonal crystal systems. In total there are six families, triclinic, monoclinic, orthorhombic, tetragonal, hexagonal. Spaces with less than three dimensions have the number of crystal systems, crystal families and lattice systems. In one-dimensional space, there is one crystal system, in 2D space, there are four crystal systems, oblique, rectangular, square and hexagonal. The relation between three-dimensional crystal families, crystal systems and lattice systems is shown in the table, Note. To avoid confusion of terminology, the term trigonal lattice is not used, if the original structure and inverted structure are identical, then the structure is centrosymmetric. Still, even for non-centrosymmetric case, inverted structure in some cases can be rotated to align with the original structure and this is the case of non-centrosymmetric achiral structure. If the inverted structure cannot be rotated to align with the structure, then the structure is chiral

5.
Orthorhombic crystal system
–
In crystallography, the orthorhombic crystal system is one of the 7 crystal systems. All three bases intersect at 90° angles, so the three lattice vectors remain mutually orthogonal, there are two orthorhombic Bravais lattices in two dimensions, Primitive rectangular and centered rectangular. The primitive rectangular lattice can also be described by a centered rhombic unit cell, there are four orthorhombic Bravais lattices, primitive orthorhombic, base-centered orthorhombic, body-centered orthorhombic, and face-centered orthorhombic. In this axis setting, the primitive and base-centered lattices interchange in centering type, crystal structure Overview of all space groups Hurlbut, Cornelius S. Klein, Cornelis. Hahn, Theo, ed. International Tables for Crystallography, Volume A, Space Group Symmetry

6.
Crystallographic point group
–
For a periodic crystal, the group must also be consistent with maintenance of the three-dimensional translational symmetry that defines crystallinity. The macroscopic properties of a crystal would look exactly the same before, in the classification of crystals, each point group is also known as a crystal class. There are infinitely many three-dimensional point groups, however, the crystallographic restriction of the infinite families of general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the same as the 32 types of morphological crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms, the point groups are denoted by their component symmetries. There are a few standard notations used by crystallographers, mineralogists, for the correspondence of the two systems below, see crystal system. In Schoenflies notation, point groups are denoted by a symbol with a subscript. The symbols used in crystallography mean the following, Cn indicates that the group has a rotation axis. Cnh is Cn with the addition of a plane perpendicular to the axis of rotation. Cnv is Cn with the addition of n mirror planes parallel to the axis of rotation, s2n denotes a group that contains only a 2n-fold rotation-reflection axis. Dn indicates that the group has a rotation axis plus n twofold axes perpendicular to that axis. Dnh has, in addition, a plane perpendicular to the n-fold axis. Dnd has, in addition to the elements of Dn, mirror planes parallel to the n-fold axis, the letter T indicates that the group has the symmetry of a tetrahedron. Td includes improper rotation operations, T excludes improper rotation operations, the letter O indicates that the group has the symmetry of an octahedron, with or without improper operations. Due to the crystallographic restriction theorem, n =1,2,3,4, d4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O, an abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are Molecular symmetry Point group Space group Point groups in three dimensions Crystal system Point-group symbols in International Tables for Crystallography,12.1, pp. 818-820 Names and symbols of the 32 crystal classes in International Tables for Crystallography. 10.1, p.794 Pictorial overview of the 32 groups Point Groups - Flow Chart Inorganic Chemistry Group Theory Practice Problems

7.
Space group
–
In mathematics, physics and chemistry, a space group is the symmetry group of a configuration in space, usually in three dimensions. In three dimensions, there are 219 distinct types, or 230 if chiral copies are considered distinct, Space groups are also studied in dimensions other than 3 where they are sometimes called Bieberbach groups, and are discrete cocompact groups of isometries of an oriented Euclidean space. In crystallography, space groups are called the crystallographic or Fedorov groups. A definitive source regarding 3-dimensional space groups is the International Tables for Crystallography, in 1879 Leonhard Sohncke listed the 65 space groups whose elements preserve the orientation. More accurately, he listed 66 groups, but Fedorov and Schönflies both noticed that two of them were really the same, the space groups in 3 dimensions were first enumerated by Fedorov, and shortly afterwards were independently enumerated by Schönflies. The correct list of 230 space groups was found by 1892 during correspondence between Fedorov and Schönflies, burckhardt describes the history of the discovery of the space groups in detail. The space groups in three dimensions are made from combinations of the 32 crystallographic point groups with the 14 Bravais lattices, the combination of all these symmetry operations results in a total of 230 different space groups describing all possible crystal symmetries. The elements of the space group fixing a point of space are rotations, reflections, the identity element, the translations form a normal abelian subgroup of rank 3, called the Bravais lattice. There are 14 possible types of Bravais lattice, the quotient of the space group by the Bravais lattice is a finite group which is one of the 32 possible point groups. Translation is defined as the moves from one point to another point. A glide plane is a reflection in a plane, followed by a parallel with that plane. This is noted by a, b or c, depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, the latter is called the diamond glide plane as it features in the diamond structure. In 17 space groups, due to the centering of the cell, the glides occur in two directions simultaneously, i. e. the same glide plane can be called b or c, a or b. For example, group Abm2 could be also called Acm2, group Ccca could be called Cccb, in 1992, it was suggested to use symbol e for such planes. The symbols for five groups have been modified, A screw axis is a rotation about an axis. These are noted by a number, n, to describe the degree of rotation, the degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. So,21 is a rotation followed by a translation of 1/2 of the lattice vector

8.
Lithium
–
Lithium is a chemical element with the symbol Li and atomic number 3. It is a soft, silver-white metal belonging to the metal group of chemical elements. Under standard conditions, it is the lightest metal and the least dense solid element, like all alkali metals, lithium is highly reactive and flammable. For this reason, it is stored in mineral oil. When cut open, it exhibits a metallic luster, but contact with moist air corrodes the surface quickly to a silvery gray. Because of its reactivity, lithium never occurs freely in nature, and instead, appears only in compounds. Lithium occurs in a number of minerals, but due to its solubility as an ion, is present in ocean water and is commonly obtained from brines. On a commercial scale, lithium is isolated electrolytically from a mixture of lithium chloride, the nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative instability, lithium is less common in the solar system than 25 of the first 32 chemical elements even though the nuclei are very light in atomic weight. For related reasons, lithium has important links to nuclear physics, the transmutation of lithium atoms to helium in 1932 was the first fully man-made nuclear reaction, and lithium-6 deuteride serves as a fusion fuel in staged thermonuclear weapons. These uses consume more than three quarters of lithium production, Lithium is found in variable amounts in foods, primary food sources are grains and vegetables, in some areas, the drinking water also provides significant amounts of the element. Human dietary lithium intakes depend on location and the type of foods consumed, traces of lithium were detected in human organs and fetal tissues already in the late 19th century, leading to early suggestions as to possible specific functions in the organism. However, it took another century until evidence for the essentiality of lithium became available, in studies conducted from the 1970s to the 1990s, rats and goats maintained on low-lithium rations were shown to exhibit higher mortalities as well as reproductive and behavioral abnormalities. Lithium appears to play an important role during the early fetal development as evidenced by the high lithium contents of the embryo during the early gestational period. The available experimental evidence now appears to be sufficient to accept lithium as essential, the lithium ion Li+ administered as any of several lithium salts has proven to be useful as a mood-stabilizing drug in the treatment of bipolar disorder in humans. Like the other metals, lithium has a single valence electron that is easily given up to form a cation. Because of this, lithium is a conductor of heat and electricity as well as a highly reactive element. Lithiums low reactivity is due to the proximity of its electron to its nucleus