Hyperkalemia

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Hyperkalemia
Synonyms Hyperkalaemia
ECG in hyperkalemia.svg
Electrocardiography showing precordial leads in hyperkalemia.
Specialty Critical care medicine, nephrology
Symptoms Palpitations, muscle pain, muscle weakness, numbness[1][2]
Complications Cardiac arrest[1][3]
Causes Kidney failure, hypoaldosteronism, rhabdomyolysis, certain medications[1]
Diagnostic method Blood potassium > 5.5 mmol/L, electrocardiogram[3][4]
Similar conditions Pseudohyperkalemia[1][2]
Treatment Medications, low potassium diet, hemodialysis[1]
Medication Calcium gluconate, dextrose with insulin, salbutamol, sodium bicarbonate[1][3][5]
Frequency ~2% (people in hospital)[2]

Hyperkalemia, also spelled hyperkalaemia, is an elevated level of potassium (K+) in the blood serum.[1] Normal potassium levels are between 3.5 and 5.0 mmol/L (3.5 and 5.0 mEq/L) with levels above 5.5 mmol/L defined as hyperkalemia.[3][4] Typically this results in no symptoms.[1] Occasionally when severe it results in palpitations, muscle pain, muscle weakness, or numbness.[1][2] An abnormal heart rate can occur which can result in cardiac arrest and death.[1][3]

Common causes include kidney failure, hypoaldosteronism, and rhabdomyolysis.[1] A number of medications can also cause high blood potassium including spironolactone, NSAIDs, and angiotensin converting enzyme inhibitors.[1] The severity is divided into mild (5.5-5.9 mmol/L), moderate (6.0-6.4 mmol/L), and severe (>6.5 mmol/L).[3] High levels can also be detected on an electrocardiogram (ECG).[3] Pseudohyperkalemia, due to breakdown of cells during or after taking the blood sample, should be ruled out.[1][2]

Initial treatment in those with ECG changes is calcium gluconate.[1][3] Medications that might worsen the condition should be stopped and a low potassium diet should be recommended.[1] Other medications used include dextrose with insulin, salbutamol, and sodium bicarbonate.[1][5] Measures to remove potassium from the body include furosemide, polystyrene sulfonate, and hemodialysis.[1] Hemodialysis is the most effective method,[3] the use of polystyrene sulfonate, while common, is poorly supported by evidence.[6]

Hyperkalemia is rare among those who are otherwise healthy,[7] among those who are in hospital, rates are between 1% and 2.5%.[2] It increases the overall risk of death by at least ten times,[2][7] the word "hyperkalemia" is from hyper- meaning high; kalium meaning potassium; and -emia, meaning "in the blood".[8][9]

Video explanation

Definitions[edit]

Normal serum potassium levels are generally considered to be between 3.5 and 5.3 mmol/L.[3] Levels above 5.5 mmol/L generally indicate hyperkalemia, and those below 3.5 mmol/L indicate hypokalemia.[1][3]

Signs and symptoms[edit]

The symptoms of an elevated potassium level are nonspecific, and generally include malaise, palpitations, and muscle weakness.[10] Hyperventilation may indicate a compensatory response to metabolic acidosis, which is one of the possible causes of hyperkalemia.[11] Often, however, the problem is detected during screening blood tests for a medical disorder, or after hospitalization for complications such as cardiac arrhythmia or sudden cardiac death. High levels of potassium (> 5.5 mmol/L) have been associated with cardiovascular events.[11]

Physicians taking a medical history may focus on kidney disease, medication use (e.g. potassium-sparing diuretics), which are common causes.[11]

Causes[edit]

Ineffective elimination[edit]

Decreased kidney function is a major cause of hyperkalemia. This is especially pronounced in acute kidney injury where the glomerular filtration rate and tubular flow are markedly decreased, characterised by reduced urine output,[11] this can be further intensified by active cellular breakdown which causes increase in serum potassium levels. In chronic kidney disease, hyperkalemia occurs as a result of reduced aldosterone responsiveness and reduced sodium and watery deliveries in distal tubules.[12]

Medications that interferes with urinary excretion by inhibiting the renin–angiotensin system is one of the commonest cause of hyperkalemia. Examples of medications are: ACE inhibitors, angiotensin receptor blockers,[11] and calcineurin inhibitor immunosuppressants such as ciclosporin and tacrolimus.[13] For potassium-sparing diuretics, such as amiloride and triamterene; both the drugs block epithelial sodium channels in the collecting tubules, thereby preventing potassium excretion into urine.[12] Spironolactone acts by competitively inhibits the action of aldosterone.[11] NSAIDs such as ibuprofen, naproxen, or celecoxib inhibits prostaglandin synthesis, leading to reduced production of renin and aldosterone, causing potassium retention.[14] The antibiotic trimethoprim and the antiparasitic drug pentamidine inhibits potassium excretion, which is similar to mechanism of action by amiloride and triamterene.[15]

Mineralocorticoid (aldosterone) deficiency or resistance can also cause hyperkalemia. Primary adrenal insufficiency are: Addison's disease[16] and congenital adrenal hyperplasia (CAH) (including enzyme deficiencies such as 21α hydroxylase, 17α hydroxylase, 11β hydroxylase, or 3β dehydrogenase).[17]

Excessive release from cells[edit]

Metabolic acidosis is a cause of hyperkalemia because increase in hydrogen ions in the cells can displace potassium out of the cells, causing a rise of serum potassium levels. However, in organic acidosis such as lactic acidosis, ketoacidosis, the effect on serum potassium levels are absent possibly because of the presence of organic ion-hydrogen ion co-transporter into the cells that minimises the displacement of potassium out of the cells. Meanwhile, in respiratory acidosis, the effect on serum potassium level is small due to unknown mechanism.[12]

Insulin increases the uptake of potassium into the cells. Therefore, insulin deficiency can cause hyperkalemia; in addition to that, hyperglycemia, which causes hyperosmolality in extracellular fluid, increases water diffusion out of the cells, which in turns increases the intracellular potassium concentration and causes potassium to move alongside water out of the cells also. The co-existence of insulin deficiency, hyperglycemia, and hyperosmolality happens in diabetic ketoacidosis. Apart from diabetic ketoacidosis, there are other causes that reduce insulin levels such as usage of octreotide drug, and fasting which can also cause hyperkalemia. Increased tissue breakdown such as rhabdomyolysis, burns, or any cause of rapid tissue necrosis, including tumor lysis syndrome can cause the release of intracellular potassium into blood, causing hyperkalemia.[12][11]

Beta2-adrenergic agonist acts on beta-2 receptor to drive potassium into the cells. Therefore, beta blockers can cause the rise in potassium levels due to blockage of beta-2 receptors. However, the rise potassium levels is not marked unless there are other co-morbidities present. Examples of drugs that can raise the serum potassium are non-selective beta-blockers such as propanolol and labetalol. Beta-1 selective blocker such as atenolol does not cause the rise in serum potassium.[12]

Exercise can cause a release of potassium into bloodstream by increasing the number of potassium channels in the cell membrane, the degree of potassium elevation varies with the degree of exercise, which range from 0.3 meq/L in light exercise to 2 meq/L in heavy exercise, with or without accompanying ECG changes or lactic acidosis. However, peak potassium levels can be reduced by prior physical conditioning and potassium levels are usually reversed several minutes after exercise.[12] High levels of adrenaline and noradrenaline have a protective effect on the cardiac electrophysiology because they bind to beta 2 adrenergic receptors, which, when activated, extracellularly decrease potassium concentration.[18]

Hyperkalemic periodic paralysis is an autosomal dominant clinical condition where there is a mutation in gene located at 17q23 that regulates the production of protein SCN4A. SCN4A is an important component of sodium channels in skeletal muscles, during exercise, sodium channels would open to allow influx of sodium into the muscle cells for depolarisation to occur. But in hyperkalemic periodic paralysis, sodium channels are slow to close after exercise, causing excessive influx of sodium and displacement of potassium out of the cells.[12][19]

Rare causes of hyperkalemia are discussed as follows. Acute digitalis overdose such as digoxin toxicity may cause hyperkalaemia[20] through the inhibition of sodium-potassium-ATPase pump.[12] Massive blood transfusion can cause hyperkalemia in infants due to leakage of potassium out of the red blood cells during storage.[12] Giving succinylcholine tn patients with conditions such as burns, trauma, infection, prolonged immobilisation can cause hyperkalemia due to widespread activation of acetylcholine receptors rather than a specific group of muscles. Arginine hydrochloride is used to treat refractory metabolic alkalosis. The arginine ions can enter cells and displace potassium out of the cells, causing hyperkalemia. Calcineurin inhibitors such as cyclosporine, tacrolimus, diazoxide, and minoxidil can cause hyperkalemia.[12] Box jellyfish venom can also cause hyperkalemia.[21]

Excessive intake[edit]

Excessive intake of potassium is not a primary cause of hyperkalemia because the human body usually can adapt to the rise in the potassium levels by increasing the excretion of potassium into urine through aldosterone hormone secretion and increasing the number of potassium secreting channels in renal tubules. Acute hyperkalemia in infants is also rare even though their body volume is small, with accidental ingestion of potassium salts or potassium medications. Hyperkalemia usually develops when there are other co-morbidities such as hypoaldosteronism and renal insufficiency.[12]

Pseudohyperkalemia[edit]

Pseudohyperkalemia occurs when the measured potassium levels is falsely elevated, this condition is usually suspected when patient is clinically well without any ECG changes. Mechanical trauma during blood drawing can cause potassium leakage out of the red blood cells due to haemolysed blood sample, since exercise can cause elevated potassium levels, repeated fist clenching can cause transient rise in potassium levels. Prolonged length of blood storage can also increase serum potassium levels. Hyperkalemia may only become apparent when a person's platelet concentration is more than 500,000/microL in a clotted blood sample (serum blood sample). Potassium leaks out of platelets after clotting has occurred, but it does not cause marked elevation of potassium in a blood sample, on the other hand, processing of heparinised, unclot blood does not cause falsely elevated potassium. In addition to that, high white cell count (greater than 120,000/microL) in patient with chronic lymphocytic leukemia increases red blood cells fragility, thus causing pseudohyperkalemia during blood processing, this problem can be avoided by processing serum samples because formation of clot protect the cells from haemolysis during processing. Besides, a familial form of pseudohyperkalemia occurs, which is characterized by increased serum potassium in whole blood stored at or below room temperature, without additional hematological abnormalities, this is due to increase potassium permeability in red blood cells.[12]

Mechanism[edit]

Physiology[edit]

Potassium is the most abundant intracellular cation and about 98% of the body's potassium is found inside cells, with the remainder in the extracellular fluid including the blood. Membrane potential is maintained principally by the concentration gradient and membrane permeability to potassium with some contribution from the Na+/K+ pump, the potassium gradient is critically important for many physiological processes, including maintenance of cellular membrane potential, homeostasis of cell volume, and transmission of action potentials in nerve cells.[11]

Potassium is eliminated from the body through the gastrointestinal tract, kidney and sweat glands; in the kidneys, elimination of potassium is passive (through the glomeruli), and reabsorption is active in the proximal tubule and the ascending limb of the loop of Henle. There is active excretion of potassium in the distal tubule and the collecting duct; both are controlled by aldosterone. In sweat glands potassium elimination is quite similar to the kidney, its excretion is also controlled by aldosterone.[citation needed]

Regulation of serum potassium is a function of intake, appropriate distribution between intracellular and extracellular compartments, and effective bodily excretion; in healthy individuals, homeostasis is maintained when cellular uptake and kidney excretion naturally counterbalance a patient’s dietary intake of potassium.[22][23] When kidney function becomes compromised, the ability of the body to effectively regulate serum potassium via the kidney declines. To compensate for this deficit in function, the colon increases its potassium secretion as part of an adaptive response. However, serum potassium remains elevated as the colonic compensating mechanism reaches its limits.[24][25]

Elevated potassium[edit]

Hyperkalemia develops when there is excessive production (oral intake, tissue breakdown) or ineffective elimination of potassium. Ineffective elimination can be hormonal (in aldosterone deficiency) or due to causes in the kidney parenchyma that impair excretion.[26]

Increased extracellular potassium levels result in depolarization of the membrane potentials of cells due to the increase in the equilibrium potential of potassium, this depolarization opens some voltage-gated sodium channels, but also increases the inactivation at the same time. Since depolarization due to concentration change is slow, it never generates an action potential by itself; instead, it results in accommodation. Above a certain level of potassium the depolarization inactivates sodium channels, opens potassium channels, thus the cells become refractory, this leads to the impairment of neuromuscular, cardiac, and gastrointestinal organ systems. Of most concern is the impairment of cardiac conduction, which can cause ventricular fibrillation, abnormally slow heart rhythms, or asystole.[11]

Diagnosis[edit]

An ECG of a person with a potassium of 5.7 showing large T waves and small P waves

To gather enough information for diagnosis, the measurement of potassium must be repeated, as the elevation can be due to hemolysis in the first sample, the normal serum level of potassium is 3.5 to 5 mmol/L. Generally, blood tests for kidney function (creatinine, blood urea nitrogen), glucose and occasionally creatine kinase and cortisol are performed. Calculating the trans-tubular potassium gradient can sometimes help in distinguishing the cause of the hyperkalemia.[citation needed]

Also, electrocardiography (EKG/ECG) may be performed to determine if there is a significant risk of abnormal heart rhythms.[11]

ECG findings[edit]

With mild to moderate hyperkalemia, there is prolongation of the PR interval and development of peaked T waves.[11] Severe hyperkalemia results in a widening of the QRS complex, and the ECG complex can evolve to a sinusoidal shape.[27] There appears to be a direct effect of elevated potassium on some of the potassium channels that increases their activity and speeds membrane repolarization. Also, (as noted above), hyperkalemia causes an overall membrane depolarization that inactivates many sodium channels, the faster repolarization of the cardiac action potential causes the tenting of the T waves, and the inactivation of sodium channels causes a sluggish conduction of the electrical wave around the heart, which leads to smaller P waves and widening of the QRS complex.[citation needed] Some of potassium currents are sensitive to extracellular potassium levels, for reasons that are not well understood, as the extracellular potassium levels increase, potassium conductance is increased so that more potassium leaves the myocyte in any given time period.[28]

The serum potassium concentration at which electrocardiographic changes develop is somewhat variable, although the factors influencing the effect of serum potassium levels on cardiac electrophysiology are not entirely understood, the concentrations of other electrolytes, as well as levels of catecholamines, play a major role.[citation needed]

ECG findings are not a reliable finding in hyperkalemia; in a retrospective review, blinded cardiologists documented peaked T-waves in only 3 of 90 ECGs with hyperkalemia. Sensitivity of peaked-Ts for hyperkalemia ranged from 0.18 to 0.52 depending on the criteria for peak-T waves.[citation needed]

Prevention[edit]

Preventing recurrence of hyperkalemia typically involves reduction of dietary potassium, removal of an offending medication, and/or the addition of a diuretic (such as furosemide or hydrochlorothiazide).[11] Sodium polystyrene sulfonate and sorbitol (combined as Kayexalate) are occasionally used on an ongoing basis to maintain lower serum levels of potassium though the safety of long-term use of sodium polystyrene sulfonate for this purpose is not well understood.[11]

High dietary sources include vegetables such as avocados,[29][30] tomatoes and potatoes, fruits such as bananas, oranges and nuts.[31]

Treatment[edit]

Emergency lowering of potassium levels is needed when new arrhythmias occur at any level of potassium in the blood, or when potassium levels exceed 6.5 mmol/l. Several agents are used to transiently lower K+ levels, the choice depends on the degree and cause of the hyperkalemia, and other aspects of the person's condition.

Myocardial excitability[edit]

Calcium (calcium chloride or calcium gluconate) increases threshold potential through a mechanism that is still unclear, thus restoring normal gradient between threshold potential and resting membrane potential, which is elevated abnormally in hyperkalemia. A standard ampule of 10% calcium chloride is 10 mL and contains 6.8 mmol of calcium. A standard ampule of 10% calcium gluconate is also 10 mL but has only 2.26 mmol of calcium. Clinical practice guidelines recommend giving 6.8 mmol for typical EKG findings of hyperkalemia.[11] This is 10 mL of 10% calcium chloride or 30 mL of 10% calcium gluconate.[11] Though calcium chloride is more concentrated, it is caustic to the veins and should only be given through a central line.[11] Onset of action is less than one to three minutes and lasts about 30–60 minutes,[11] the goal of treatment is to normalize the EKG and doses can be repeated if the EKG does not improve within a few minutes.[11]

Some textbooks suggest that calcium should not be given in digoxin toxicity as it has been linked to cardiovascular collapse in humans and increased digoxin toxicity in animal models. Recent literature questions the validity of this concern.[citation needed]

Temporary measures[edit]

Several medical treatments shift potassium ions from the bloodstream into the cellular compartment, thereby reducing the risk of complications, the effect of these measures tends to be short-lived, but may temporize the problem until potassium can be removed from the body.[32]

  • Insulin (e.g. intravenous injection of 10-15 units of regular insulin along with 50 ml of 50% dextrose to prevent hypoglycemia) leads to a shift of potassium ions into cells, secondary to increased activity of the sodium-potassium ATPase.[33] Its effects last a few hours, so it sometimes must be repeated while other measures are taken to suppress potassium levels more permanently, the insulin is usually given with an appropriate amount of glucose to prevent hypoglycemia following the insulin administration.
  • Salbutamol (albuterol), a β2-selective catecholamine, is administered by nebulizer (e.g. 10–20 mg). This drug also lowers blood levels of K+ by promoting its movement into cells.[33]
  • Sodium bicarbonate may be used with the above measures if it is believed the person has metabolic acidosis.[3]

Elimination[edit]

Severe cases require hemodialysis or hemofiltration, which are the most rapid methods of removing potassium from the body,[33] these are typically used if the underlying cause cannot be corrected swiftly while temporizing measures are instituted or there is no response to these measures.

Potassium can bind to agents in the gastrointestinal tract.[34][35] Sodium polystyrene sulfonate with sorbitol (Kayexalate) has been approved for this use and can be given by mouth or rectally.[33] However, careful clinical trials to demonstrate the effectiveness of sodium polystyrene are lacking, and use of sodium polystyrene sulfonate, particularly if with high sorbitol content, is uncommonly but convincingly associated with colonic necrosis.[6][36][37] There are no systematic studies (>6 months) looking at the long-term safety of this medication.[38] Another medication by the name of patiromer was approved in 2015.[39]

Loop diuretics (furosemide, bumetanide, torasemide) can increase kidney potassium excretion in people with intact kidney function.[33]

Fludrocortisone, a synthetic mineralocorticoid, can also increase potassium excretion by the kidney in patients with functioning kidneys.[40][41] Trials of fludrocortisone in patients on dialysis have shown it to be ineffective.[42]

Patiromer is a selective sorbent that is taken by mouth and works by binding free potassium ions in the gastrointestinal tract and releasing calcium ions for exchange, thus lowering the amount of potassium available for absorption into the bloodstream and increasing the amount that is excreted via the feces.[11] The net effect is a reduction of potassium levels in the blood serum.[11]

Society and culture[edit]

In the United States, hyperkalemia is induced by lethal injection in capital punishment cases. Potassium chloride is the last of the three drugs administered and actually causes death. Injecting potassium chloride into the heart muscle disrupts the signal that causes the heart to beat, this same amount of potassium chloride would do no harm if taken orally and not injected directly into the blood.

Research[edit]

Sodium zirconium cyclosilicate (ZS-9) is an investigational selective oral sorbent that binds potassium in the gastrointestinal tract in exchange for sodium and hydrogen ions.[11]

References[edit]

  1. ^ a b c d e f g h i j k l m n o p q r Lehnhardt, A; Kemper, MJ (March 2011). "Pathogenesis, diagnosis and management of hyperkalemia.". Pediatric nephrology (Berlin, Germany). 26 (3): 377–84. PMC 3061004Freely accessible. PMID 21181208. doi:10.1007/s00467-010-1699-3. 
  2. ^ a b c d e f g McDonald, TJ; Oram, RA; Vaidya, B (20 October 2015). "Investigating hyperkalaemia in adults.". BMJ (Clinical research ed.). 351: h4762. PMID 26487322. doi:10.1136/bmj.h4762. 
  3. ^ a b c d e f g h i j k l Soar, J; Perkins, GD; Abbas, G; Alfonzo, A; Barelli, A; Bierens, JJ; Brugger, H; Deakin, CD; Dunning, J; Georgiou, M; Handley, AJ; Lockey, DJ; Paal, P; Sandroni, C; Thies, KC; Zideman, DA; Nolan, JP (October 2010). "European Resuscitation Council Guidelines for Resuscitation 2010 Section 8. Cardiac arrest in special circumstances: Electrolyte abnormalities, poisoning, drowning, accidental hypothermia, hyperthermia, asthma, anaphylaxis, cardiac surgery, trauma, pregnancy, electrocution.". Resuscitation. 81 (10): 1400–33. PMID 20956045. doi:10.1016/j.resuscitation.2010.08.015. 
  4. ^ a b Pathy, M.S. John (2006). Principles and practice of geriatric medicine (4. ed.). Chichester [u.a.]: Wiley. p. Appendix. ISBN 9780470090558. Archived from the original on 2016-10-01. 
  5. ^ a b Mahoney, BA; Smith, WA; Lo, DS; Tsoi, K; Tonelli, M; Clase, CM (18 April 2005). "Emergency interventions for hyperkalaemia.". The Cochrane database of systematic reviews (2): CD003235. PMID 15846652. doi:10.1002/14651858.CD003235.pub2. 
  6. ^ a b Kamel KS, Schreiber M; Schreiber (2012). "Asking the question again: Are cation exchange resins effective for the treatment of hyperkalemia?". Nephrology Dialysis Transplantation. 27 (12): 4294–7. PMID 22989741. doi:10.1093/ndt/gfs293. 
  7. ^ a b Kovesdy, CP (6 September 2016). "Updates in hyperkalemia: Outcomes and therapeutic strategies.". Reviews in endocrine & metabolic disorders. PMID 27600582. doi:10.1007/s11154-016-9384-x. 
  8. ^ Cohen, Barbara J.; DePetris, Ann (2013). Medical Terminology: An Illustrated Guide. Lippincott Williams & Wilkins. p. 326. ISBN 9781451187564. Archived from the original on 2017-09-08. 
  9. ^ Herlihy, Barbara (2014). The Human Body in Health and Illness. Elsevier Health Sciences. p. 487. ISBN 9781455756421. Archived from the original on 2017-09-08. 
  10. ^ "High potassium (hyperkalemia) When to see a doctor - Symptoms". Mayo Clinic. 2011-11-18. Archived from the original on 2014-02-28. Retrieved 2014-02-28. 
  11. ^ a b c d e f g h i j k l m n o p q r s t u Kovesdy, CP (December 2015). "Management of Hyperkalemia: An Update for the Internist". The American Journal of Medicine. 128 (12): 1281–7. PMID 26093176. doi:10.1016/j.amjmed.2015.05.040. 
  12. ^ a b c d e f g h i j k l B Mount, David; H Sterns, Richard; P Forman, John (5 June 2017). "Causes and evaluation of hyperkalemia in adults". UpToDate. Retrieved 28 September 2017. (Subscription required (help)). 
  13. ^ Hwa Lee, Chang; Ho Kim, Gheun (31 December 2007). "Electrolyte and Acid-Base Disturbances Induced by Clacineurin Inhibitors". Electrolyte Blood Press. 5 (2): 126–130. PMC 3894512Freely accessible. doi:10.5049/EBP.2007.5.2.126. Cyclosporine may reduce potassium excretion by altering the function of several transporters, decreasing the activity of the renin-angiotensin-aldosterone system, and impairing tubular responsiveness to aldosterone 
  14. ^ Kim, Sejoong; Joo, KW (31 December 2007). "Electrolyte and Acid-Base Disturbances Associated with Non-Steroidal Anti-Inflammatory Drugs". Electrolyte Blood Press. 5 (2): 116–125. PMC 3894511Freely accessible. doi:10.5049/EBP.2007.5.2.116. 
  15. ^ Karet, FE (February 2009). "Mechanisms in Hyperkalemic Renal Tubular Acidosis". Journal of American Society of Nephrology. 20 (2): 251–254. Retrieved 5 October 2017. whereas the ENaC itself is blocked not only by amiloride and triamterene but also by trimethoprim and pentamidine. 
  16. ^ B Mount, David; H Sterns, Richard; Lacroix, Andre; Forman P, John. "Hyponatremia and hyperkalemia in adrenal insufficiency". UpToDate. Retrieved 6 October 2017. 
  17. ^ F Young, William; H Sterns, Richard; Forman, John P. "Etiology, diagnosis, and treatment of hypoaldosteronism (type 4 RTA)". UpToDate. Retrieved 12 October 2017. In children, hypoaldosteronism can result from a deficiency of enzymes required for aldosterone synthesis 
  18. ^ Lindinger MI (April 1995). "Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle". J. Mol. Cell. Cardiol. 27 (4): 1011–1022. PMID 7563098. doi:10.1016/0022-2828(95)90070-5. 
  19. ^ Gutmann, Laurie; Conwit, Robin; M shefner, Jeremy; L Wilterdink, Janet. "Hyperkalemic periodic paralysis". UpToDate. Retrieved 3 October 2017. (Subscription required (help)). 
  20. ^ Digitalis Toxicity at eMedicine
  21. ^ Haddad, Vidal (2016). Medical Emergencies Caused by Aquatic Animals: A Zoological and Clinical Guide. Springer. p. 11. ISBN 9783319202884. 
  22. ^ Brown, Robert (November 5, 1984). "Potassium Homeostasis and clinical implications". The American Journal of Medicine. 77: 3–10. doi:10.1016/s0002-9343(84)80002-9. 
  23. ^ Weiner, ID; Linas, SL; Wingo, CS (2010). Johnson, R.; Fluege, J.; Feehally, J., eds. Comprehensive Clinical Nephrology 4th ed. Chapter 9 Disorder of Potassium Metabolism: Saunders elsevier. pp. 118–129. 
  24. ^ Mathialahan, T; Maclennan, KA; Sandle, LN; Verbeke, C; Sandle, GI (2005). "Enhanced large intestinal potassium permeability in end-stage renal disease". Journal of Pathology. 206 (1): 46–51. PMID 15772943. doi:10.1002/path.1750. 
  25. ^ Evans, KJ; Greenberg, A (2005). "Hyperkalemia: A review". J Intensive Care Med. 20 (5): 272–290. PMID 16145218. doi:10.1177/0885066605278969. 
  26. ^ Desai, A (14 October 2008). "Hyperkalemia associated with inhibitors of the renin-angiotensin-aldosterone system: balancing risk and benefit.". Circulation. 118 (16): 1609–11. PMID 18852376. doi:10.1161/circulationaha.108.807917. 
  27. ^ "Archived copy". Archived from the original on 2016-03-25. Retrieved 2016-03-25. 
  28. ^ Parham Walter A., Mehdirad Ali A., Biermann Kurt M., Fredman Carey S. (2006). "Hyperkalemia Revisited". Tex Heart Inst J. 33 (1): 40–47. PMC 1413606Freely accessible. PMID 16572868. 
  29. ^ Dreher ML, Davenport AJ (2013). "Hass avocado composition and potential health effects". Crit Rev Food Sci Nutr. 53: 738–50. PMC 3664913Freely accessible. PMID 23638933. doi:10.1080/10408398.2011.556759. 
  30. ^ Avocado has more potassium than banana Archived 2017-02-03 at the Wayback Machine. May 5, 2011, UPI.com
  31. ^ "POTASSIUM AND YOUR CKD DIET". Archived from the original on 22 December 2015. Retrieved 21 December 2015. 
  32. ^ Elliott MJ, Ronksley PE, Clase CM, Ahmed SB, Hemmelgarn BR; Ronksley; Clase; Ahmed; Hemmelgarn (October 2010). "Management of patients with acute hyperkalemia". CMAJ. 182 (15): 1631–5. PMC 2952010Freely accessible. PMID 20855477. doi:10.1503/cmaj.100461. 
  33. ^ a b c d e Vanden Hoek TL, Morrison LJ, Shuster M, Donnino M, Sinz E, Lavonas EJ, Jeejeebhoy FM, Gabrielli A; Morrison; Shuster; Donnino; Sinz; Lavonas; Jeejeebhoy; Gabrielli (2010-11-02). "Part 12: cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S829–61. PMID 20956228. doi:10.1161/CIRCULATIONAHA.110.971069. 
  34. ^ HOLLANDER-RODRIGUEZ, JC; CALVERT, J (2006). "Hyperkalemia". Am Fam Physician. 73 (2): 283–90. PMID 16445274. 
  35. ^ Weiner, DI; Linas, SL; Wingo, CS (2010). Comprehensive Clinical Nephrology (4th ed.). Chapter 9: Disorders of potassium metabolism: Saunders Elsevier. pp. 118–129. 
  36. ^ Watson M, Abbott KC, Yuan CM; Abbott; Yuan (2010). "Damned if You Do, Damned if You Don't: Potassium Binding Resins in Hyperkalemia". Clinical Journal of the American Society of Nephrology. 5 (10): 1723–6. PMID 20798253. doi:10.2215/CJN.03700410. 
  37. ^ Sterns RH, Rojas M, Bernstein P, Chennupati S; Rojas; Bernstein; Chennupati (May 2010). "Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective?". J. Am. Soc. Nephrol. 21 (5): 733–5. PMID 20167700. doi:10.1681/ASN.2010010079. 
  38. ^ Harel, Z; Harel, S; Shah, PS; et al. (2013). "Gastrointestinal adverse events with sodium polystyrene sulfonate (kayexalate) use: a systematic review.". Am J Med. 126 (264): e9–264.e24. doi:10.1016/j.amjmed.2012.08.016. 
  39. ^ "FDA approves new drug to treat hyperkalemia". FDA. October 21, 2015. Archived from the original on 7 November 2015. Retrieved 1 November 2015. 
  40. ^ Sherman DS, Kass CL, Fish DN; Kass; Fish (May 2000). "Fludrocortisone for the treatment of heparin-induced hyperkalemia". The Annals of pharmacotherapy. 34 (5): 606–10. PMID 10852087. doi:10.1345/aph.19326. 
  41. ^ Dick TB, Raines AA, Stinson JB, Collingridge DS, Harmston GE; Raines; Stinson; Collingridge; Harmston (Sep 2011). "Fludrocortisone is effective in the management of tacrolimus-induced hyperkalemia in liver transplant recipients". Transplantation proceedings. 43 (7): 2664–8. PMID 21911143. doi:10.1016/j.transproceed.2011.07.006. 
  42. ^ Kaisar MO, Wiggins KJ, Sturtevant JM, Hawley CM, Campbell SB, Isbel NM, Mudge DW, Bofinger A, Petrie JJ, Johnson DW; Wiggins; Sturtevant; Hawley; Campbell; Isbel; Mudge; Bofinger; Petrie; Johnson (May 2006). "A randomized controlled trial of fludrocortisone for the treatment of hyperkalemia in hemodialysis patients". American Journal of Kidney Diseases. 47 (5): 809–14. PMID 16632019. doi:10.1053/j.ajkd.2006.01.014. 

External links[edit]

Classification
V · T · D
External resources