1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times
2.
University of Kinshasa
–
The University of Kinshasa, is one of three universities, along with University of Kisangani and University of Lubumbashi, created following the division of the National University of Zaire. The university had an enrollment of 26,186 and a faculty and research staff of 1,530 in the 2006-2007 academic year, the university is located about 15 kilometers south of central Kinshasa, in the suburb of Lemba. Many of the facilities have deteriorated and are in poor condition, or lack proper instructional tools - in 2003. Since 2001, the university has hosted Cisco Academy, a joint project sponsored by the American software company Cisco, the academy focuses on providing recent technology, training students to install and operate computer networks and all coursework is online. The university was established in 1954 as the University of Lovanium by Belgian colonial authorities following criticism that they had too little to educate the Congolese people. The university was affiliated with the Catholic University of Leuven in Belgium. In August 1971, the university was merged with the Protestant Autonomous University of Congo, ties were cut with the Catholic University of Leuven, and funding for the university began to drop precipitously. At this point, the university had an enrollment capacity of just 5,000, the decision to merge the private universities into one centralized system was made, at least partially, to counter concerns about political demonstrations on campuses. The entire higher education system was run by a rector and faculty. Newly independent, the University of Kinshasa continued to struggle throughout the 1980s. By 1985, the campus was in decline, strewn with trash, the universitys cafeteria stopped serving meals and pay for professors slipped as low as $15. Through the 1980s, as much as 90 percent of the budget was paid for by the government. By 2002, the government only contributed $8,000 of the universitys estimated $4.3 million annual budget, the first nuclear reactor in Africa was built at the University of Kinshasa in 1958. The reactor, known as TRICO I, is a TRIGA reactor built by General Atomics, TRICO stands for a combination of TRIGA or “Training Isotopes General Atomic” and Congo. The reactor was built while the country was still under Belgian control, TRIGA I was estimated to have a 50-kilowatt capacity and was shut down in 1970. In 1967, the African Union established a research center, the Regional Center for Nuclear Studies. The second reactor, TRICO II, is believed to have a capacity and was brought online in 1972. In 2001, the TRICO II reactor was reported to be operational, the government of the Democratic Republic of Congo stopped funding the program in the late 1980s, and the United States has since refused to ship replacement parts
3.
Parity (mathematics)
–
Parity is a mathematical term that describes the property of an integers inclusion in one of two categories, even or odd. An integer is even if it is divisible by two and odd if it is not even. For example,6 is even there is no remainder when dividing it by 2. By contrast,3,5,7,21 leave a remainder of 1 when divided by 2, examples of even numbers include −4,0,8, and 1738. In particular, zero is an even number, some examples of odd numbers are −5,3,9, and 73. Parity does not apply to non-integer numbers and this classification applies only to integers, i. e. non-integers like 1/2,4.201, or infinity are neither even nor odd. The sets of even and odd numbers can be defined as following and that is, if the last digit is 1,3,5,7, or 9, then it is odd, otherwise it is even. The same idea will work using any even base, in particular, a number expressed in the binary numeral system is odd if its last digit is 1 and even if its last digit is 0. In an odd base, the number is according to the sum of its digits – it is even if. The following laws can be verified using the properties of divisibility and they are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic, however, subtraction in modulo 2 is identical to addition, so subtraction also possesses these properties, which is not true for normal integer arithmetic. The structure is in fact a field with just two elements, the division of two whole numbers does not necessarily result in a whole number. For example,1 divided by 4 equals 1/4, which is neither even nor odd, since the concepts even, but when the quotient is an integer, it will be even if and only if the dividend has more factors of two than the divisor. The ancient Greeks considered 1, the monad, to be neither odd nor fully even. It is this, that two relatively different things or ideas there stands always a third, in a sort of balance. Thus, there is here between odd and even numbers one number which is neither of the two, similarly, in form, the right angle stands between the acute and obtuse angles, and in language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught to think for himself can scarcely help noticing this, integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as the parity of the sum of the coordinates. For instance, the cubic lattice and its higher-dimensional generalizations
4.
Natural number
–
In mathematics, the natural numbers are those used for counting and ordering. In common language, words used for counting are cardinal numbers, texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, but in other writings, that term is used instead for the integers. These chains of extensions make the natural numbers canonically embedded in the number systems. Properties of the numbers, such as divisibility and the distribution of prime numbers, are studied in number theory. Problems concerning counting and ordering, such as partitioning and enumerations, are studied in combinatorics, the most primitive method of representing a natural number is to put down a mark for each object. Later, a set of objects could be tested for equality, excess or shortage, by striking out a mark, the first major advance in abstraction was the use of numerals to represent numbers. This allowed systems to be developed for recording large numbers, the ancient Egyptians developed a powerful system of numerals with distinct hieroglyphs for 1,10, and all the powers of 10 up to over 1 million. A stone carving from Karnak, dating from around 1500 BC and now at the Louvre in Paris, depicts 276 as 2 hundreds,7 tens, and 6 ones, and similarly for the number 4,622. A much later advance was the development of the idea that 0 can be considered as a number, with its own numeral. The use of a 0 digit in place-value notation dates back as early as 700 BC by the Babylonians, the Olmec and Maya civilizations used 0 as a separate number as early as the 1st century BC, but this usage did not spread beyond Mesoamerica. The use of a numeral 0 in modern times originated with the Indian mathematician Brahmagupta in 628, the first systematic study of numbers as abstractions is usually credited to the Greek philosophers Pythagoras and Archimedes. Some Greek mathematicians treated the number 1 differently than larger numbers, independent studies also occurred at around the same time in India, China, and Mesoamerica. In 19th century Europe, there was mathematical and philosophical discussion about the nature of the natural numbers. A school of Naturalism stated that the numbers were a direct consequence of the human psyche. Henri Poincaré was one of its advocates, as was Leopold Kronecker who summarized God made the integers, in opposition to the Naturalists, the constructivists saw a need to improve the logical rigor in the foundations of mathematics. In the 1860s, Hermann Grassmann suggested a recursive definition for natural numbers thus stating they were not really natural, later, two classes of such formal definitions were constructed, later, they were shown to be equivalent in most practical applications. The second class of definitions was introduced by Giuseppe Peano and is now called Peano arithmetic and it is based on an axiomatization of the properties of ordinal numbers, each natural number has a successor and every non-zero natural number has a unique predecessor. Peano arithmetic is equiconsistent with several systems of set theory
5.
Divisor
–
In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some other integer to produce n. In this case one says also that n is a multiple of m, an integer n is divisible by another integer m if m is a divisor of n, this implies dividing n by m leaves no remainder. Under this definition, the statement m ∣0 holds for every m, as before, but with the additional constraint k ≠0. Under this definition, the statement m ∣0 does not hold for m ≠0, in the remainder of this article, which definition is applied is indicated where this is significant. Divisors can be negative as well as positive, although sometimes the term is restricted to positive divisors. For example, there are six divisors of 4, they are 1,2,4, −1, −2, and −4,1 and −1 divide every integer. Every integer is a divisor of itself, every integer is a divisor of 0. Integers divisible by 2 are called even, and numbers not divisible by 2 are called odd,1, −1, n and −n are known as the trivial divisors of n. A divisor of n that is not a divisor is known as a non-trivial divisor. A non-zero integer with at least one divisor is known as a composite number, while the units −1 and 1. There are divisibility rules which allow one to recognize certain divisors of a number from the numbers digits, the generalization can be said to be the concept of divisibility in any integral domain. 7 is a divisor of 42 because 7 ×6 =42 and it can also be said that 42 is divisible by 7,42 is a multiple of 7,7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2,3, the positive divisors of 42 are 1,2,3,6,7,14,21,42. 5 ∣0, because 5 ×0 =0, if a ∣ b and b ∣ a, then a = b or a = − b. If a ∣ b and a ∣ c, then a ∣ holds, however, if a ∣ b and c ∣ b, then ∣ b does not always hold. If a ∣ b c, and gcd =1, then a ∣ c, if p is a prime number and p ∣ a b then p ∣ a or p ∣ b. A positive divisor of n which is different from n is called a proper divisor or a part of n. A number that does not evenly divide n but leaves a remainder is called an aliquant part of n, an integer n >1 whose only proper divisor is 1 is called a prime number
6.
Fundamental theorem of arithmetic
–
For example,1200 =24 ×31 ×52 =3 ×2 ×2 ×2 ×2 ×5 ×5 =5 ×2 ×3 ×2 ×5 ×2 ×2 = etc. The requirement that the factors be prime is necessary, factorizations containing composite numbers may not be unique. This theorem is one of the reasons why 1 is not considered a prime number, if 1 were prime. Book VII, propositions 30,31 and 32, and Book IX, proposition 14 of Euclids Elements are essentially the statement, proposition 30 is referred to as Euclids lemma. And it is the key in the proof of the theorem of arithmetic. Proposition 31 is proved directly by infinite descent, proposition 32 is derived from proposition 31, and prove that the decomposition is possible. Book IX, proposition 14 is derived from Book VII, proposition 30, indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case. Article 16 of Gauss Disquisitiones Arithmeticae is a modern statement. < pk are primes and the αi are positive integers and this representation is commonly extended to all positive integers, including one, by the convention that the empty product is equal to 1. This representation is called the representation of n, or the standard form of n. For example 999 = 33×37,1000 = 23×53,1001 = 7×11×13 Note that factors p0 =1 may be inserted without changing the value of n, allowing negative exponents provides a canonical form for positive rational numbers. However, as Integer factorization of large integers is much harder than computing their product, gcd or lcm, these formulas have, in practice, many arithmetical functions are defined using the canonical representation. In particular, the values of additive and multiplicative functions are determined by their values on the powers of prime numbers, the proof uses Euclids lemma, if a prime p divides the product of two natural numbers a and b, then p divides a or p divides b. We need to show that every integer greater than 1 is either prime or a product of primes, for the base case, note that 2 is prime. By induction, assume true for all numbers between 1 and n, if n is prime, there is nothing more to prove. Otherwise, there are integers a and b, where n = ab and 1 < a ≤ b < n, by the induction hypothesis, a = p1p2. pj and b = q1q2. qk are products of primes. But then n = ab = p1p2. pjq1q2. qk is a product of primes, assume that s >1 is the product of prime numbers in two different ways, s = p 1 p 2 ⋯ p m = q 1 q 2 ⋯ q n. We must show m = n and that the qj are a rearrangement of the pi, by Euclids lemma, p1 must divide one of the qj, relabeling the qj if necessary, say that p1 divides q1