1.
Decimal
–
This article aims to be an accessible introduction. For the mathematical definition, see Decimal representation, the decimal numeral system has ten as its base, which, in decimal, is written 10, as is the base in every positional numeral system. It is the base most widely used by modern civilizations. Decimal fractions have terminating decimal representations and other fractions have repeating decimal representations, Decimal notation is the writing of numbers in a base-ten numeral system. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, Roman numerals have symbols for the decimal powers and secondary symbols for half these values. Brahmi numerals have symbols for the nine numbers 1–9, the nine decades 10–90, plus a symbol for 100, Chinese numerals have symbols for 1–9, and additional symbols for powers of ten, which in modern usage reach 1072. Positional decimal systems include a zero and use symbols for the ten values to represent any number, positional notation uses positions for each power of ten, units, tens, hundreds, thousands, etc. The position of each digit within a number denotes the multiplier multiplied with that position has a value ten times that of the position to its right. There were at least two independent sources of positional decimal systems in ancient civilization, the Chinese counting rod system. Ten is the number which is the count of fingers and thumbs on both hands, the English word digit as well as its translation in many languages is also the anatomical term for fingers and toes. In English, decimal means tenth, decimate means reduce by a tenth, however, the symbols used in different areas are not identical, for instance, Western Arabic numerals differ from the forms used by other Arab cultures. A decimal fraction is a fraction the denominator of which is a power of ten. g, Decimal fractions 8/10, 1489/100, 24/100000, and 58900/10000 are expressed in decimal notation as 0.8,14.89,0.00024,5.8900 respectively. In English-speaking, some Latin American and many Asian countries, a period or raised period is used as the separator, in many other countries, particularly in Europe. The integer part, or integral part of a number is the part to the left of the decimal separator. The part from the separator to the right is the fractional part. It is usual for a number that consists only of a fractional part to have a leading zero in its notation. Any rational number with a denominator whose only prime factors are 2 and/or 5 may be expressed as a decimal fraction and has a finite decimal expansion. 1/2 =0.5 1/20 =0.05 1/5 =0.2 1/50 =0.02 1/4 =0.25 1/40 =0.025 1/25 =0.04 1/8 =0.125 1/125 =0.008 1/10 =0

2.
Geometry
–
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer, Geometry arose independently in a number of early cultures as a practical way for dealing with lengths, areas, and volumes. Geometry began to see elements of mathematical science emerging in the West as early as the 6th century BC. By the 3rd century BC, geometry was put into a form by Euclid, whose treatment, Euclids Elements. Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC, islamic scientists preserved Greek ideas and expanded on them during the Middle Ages. By the early 17th century, geometry had been put on a solid footing by mathematicians such as René Descartes. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, while geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, contemporary geometry has many subfields, Euclidean geometry is geometry in its classical sense. The mandatory educational curriculum of the majority of nations includes the study of points, lines, planes, angles, triangles, congruence, similarity, solid figures, circles, Euclidean geometry also has applications in computer science, crystallography, and various branches of modern mathematics. Differential geometry uses techniques of calculus and linear algebra to problems in geometry. It has applications in physics, including in general relativity, topology is the field concerned with the properties of geometric objects that are unchanged by continuous mappings. In practice, this often means dealing with large-scale properties of spaces, convex geometry investigates convex shapes in the Euclidean space and its more abstract analogues, often using techniques of real analysis. It has close connections to convex analysis, optimization and functional analysis, algebraic geometry studies geometry through the use of multivariate polynomials and other algebraic techniques. It has applications in areas, including cryptography and string theory. Discrete geometry is concerned mainly with questions of relative position of simple objects, such as points. It shares many methods and principles with combinatorics, Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics. The earliest recorded beginnings of geometry can be traced to ancient Mesopotamia, the earliest known texts on geometry are the Egyptian Rhind Papyrus and Moscow Papyrus, the Babylonian clay tablets such as Plimpton 322. For example, the Moscow Papyrus gives a formula for calculating the volume of a truncated pyramid, later clay tablets demonstrate that Babylonian astronomers implemented trapezoid procedures for computing Jupiters position and motion within time-velocity space

3.
Circle
–
A circle is a simple closed shape in Euclidean geometry. The distance between any of the points and the centre is called the radius, a circle is a simple closed curve which divides the plane into two regions, an interior and an exterior. Annulus, the object, the region bounded by two concentric circles. Arc, any connected part of the circle, centre, the point equidistant from the points on the circle. Chord, a segment whose endpoints lie on the circle. Circumference, the length of one circuit along the circle, or the distance around the circle and it is a special case of a chord, namely the longest chord, and it is twice the radius. Disc, the region of the bounded by a circle. Lens, the intersection of two discs, passant, a coplanar straight line that does not touch the circle. Radius, a line segment joining the centre of the circle to any point on the circle itself, or the length of such a segment, sector, a region bounded by two radii and an arc lying between the radii. Segment, a region, not containing the centre, bounded by a chord, secant, an extended chord, a coplanar straight line cutting the circle at two points. Semicircle, an arc that extends from one of a diameters endpoints to the other, in non-technical common usage it may mean the diameter, arc, and its interior, a two dimensional region, that is technically called a half-disc. A half-disc is a case of a segment, namely the largest one. Tangent, a straight line that touches the circle at a single point. The word circle derives from the Greek κίρκος/κύκλος, itself a metathesis of the Homeric Greek κρίκος, the origins of the words circus and circuit are closely related. The circle has been known since before the beginning of recorded history, natural circles would have been observed, such as the Moon, Sun, and a short plant stalk blowing in the wind on sand, which forms a circle shape in the sand. The circle is the basis for the wheel, which, with related inventions such as gears, in mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Some highlights in the history of the circle are,1700 BCE – The Rhind papyrus gives a method to find the area of a circular field. The result corresponds to 256/81 as a value of π.300 BCE – Book 3 of Euclids Elements deals with the properties of circles

4.
Three-dimensional space
–
Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the meaning of the term dimension. In physics and mathematics, a sequence of n numbers can be understood as a location in n-dimensional space, when n =3, the set of all such locations is called three-dimensional Euclidean space. It is commonly represented by the symbol ℝ3 and this serves as a three-parameter model of the physical universe in which all known matter exists. However, this space is one example of a large variety of spaces in three dimensions called 3-manifolds. Furthermore, in case, these three values can be labeled by any combination of three chosen from the terms width, height, depth, and breadth. In mathematics, analytic geometry describes every point in space by means of three coordinates. Three coordinate axes are given, each perpendicular to the two at the origin, the point at which they cross. They are usually labeled x, y, and z, below are images of the above-mentioned systems. Two distinct points determine a line. Three distinct points are either collinear or determine a unique plane, four distinct points can either be collinear, coplanar or determine the entire space. Two distinct lines can intersect, be parallel or be skew. Two parallel lines, or two intersecting lines, lie in a plane, so skew lines are lines that do not meet. Two distinct planes can either meet in a line or are parallel. Three distinct planes, no pair of which are parallel, can meet in a common line. In the last case, the three lines of intersection of each pair of planes are mutually parallel, a line can lie in a given plane, intersect that plane in a unique point or be parallel to the plane. In the last case, there will be lines in the plane that are parallel to the given line, a hyperplane is a subspace of one dimension less than the dimension of the full space. The hyperplanes of a space are the two-dimensional subspaces, that is

5.
Spacetime
–
In physics, spacetime is any mathematical model that combines space and time into a single interwoven continuum. Until the turn of the 20th century, the assumption had been that the 3D geometry of the universe was distinct from time, Einsteins theory was framed in terms of kinematics, and showed how measurements of space and time varied for observers in different reference frames. His theory was an advance over Lorentzs 1904 theory of electromagnetic phenomena. A key feature of this interpretation is the definition of an interval that combines distance. Although measurements of distance and time between events differ among observers, the interval is independent of the inertial frame of reference in which they are recorded. The resultant spacetime came to be known as Minkowski space, non-relativistic classical mechanics treats time as a universal quantity of measurement which is uniform throughout space and which is separate from space. Classical mechanics assumes that time has a constant rate of passage that is independent of the state of motion of an observer, furthermore, it assumes that space is Euclidean, which is to say, it assumes that space follows the geometry of common sense. General relativity, in addition, provides an explanation of how gravitational fields can slow the passage of time for an object as seen by an observer outside the field. Mathematically, spacetime is a manifold, which is to say, by analogy, at small enough scales, a globe appears flat. An extremely large scale factor, c relates distances measured in space with distances measured in time, waves implied the existence of a medium which waved, but attempts to measure the properties of the hypothetical luminiferous aether implied by these experiments provided contradictory results. For example, the Fizeau experiment of 1851 demonstrated that the speed of light in flowing water was less than the speed of light in air plus the speed of the flowing water, the partial aether-dragging implied by this result was in conflict with measurements of stellar aberration. By 1904, Lorentz had expanded his theory such that he had arrived at equations formally identical with those that Einstein were to derive later, but with a fundamentally different interpretation. As a theory of dynamics, his theory assumed actual physical deformations of the constituents of matter. For example, most physicists believed that Lorentz contraction would be detectable by such experiments as the Trouton–Noble experiment or the Experiments of Rayleigh and Brace. However, these negative results, and in his 1904 theory of the electron. Einstein performed his analyses in terms of kinematics rather than dynamics and it would appear that he did not at first think geometrically about spacetime. It was Einsteins former mathematics professor, Hermann Minkowski, who was to provide an interpretation of special relativity. Einstein was initially dismissive of the interpretation of special relativity

6.
Duncan Sommerville
–
Duncan MacLaren Young Sommerville FRSE FRAS was a Scottish mathematician and astronomer. He compiled a bibliography on non-Euclidean geometry and also wrote a textbook in that field. He also wrote Introduction to the Geometry of N Dimensions, advancing the study of polytopes and he was a co-founder and the first secretary of the New Zealand Astronomical Society. Sommerville was also an accomplished watercolourist, producing a series of works of the New Zealand landscape, the middle name MacLaren is spelt using the old orthography MLaren in some sources, for example the records of the Royal Society of Edinburgh. Sommerville was born in Beawar, India where his father was employed as a doctor by the United Presbyterian Church of Scotland. The Rev Dr James Sommerville had been responsible for establishing the hospital at Jodhpur, the family returned home to Scotland, where Duncan first spent 4 years at a private school in Perth, before being sent to Perth Academy. He then studied at the University of St Andrews in Fife, Sommerville taught at St. Andrews from 1902 to 1914. In projective geometry the method of Cayley–Klein metrics had been used in the 19th century to model non-euclidean geometry, in 1910 Duncan wrote Classification of geometries with projective metrics. The classification is described by Daniel Corey as follows, He classifies them into 9 types of geometries,27 in dimension 3. A number of these geometries have found applications, for instance in physics, in 1911 Sommerville published his compiled bibliography of works on non-euclidean geometry, and it received favorable reviews. In 1970 Chelsea Publishing issued an edition which referred to collected works then available of some of the cited authors. Sommerville was elected a Fellow of the Royal Society of Edinburgh in 1911, the following year he married Louisa Agnes Beveridge. In 1915 Sommerville went to New Zealand to take up the Chair of Pure, Duncan became interested in honeycombs and wrote Division of space by congruent triangles and tetrahedra in 1923. The following year he extended results to n-dimensional space and he also discovered the Dehn–Sommerville equations for the number of faces of convex polytopes. Sommerville used geometry to describe the theory of a preferential ballot. He addressed Nansons method where n candidates are ordered by voters into a sequence of preferences, Sommerville shows that the outcomes lie in n. simplexes that cover the surface of an n −2 dimensional spherical space. When his Introduction to Geometry of N Dimensions appeared in 1929, wong in the American Mathematical Monthly. Sommerville was co-founder and first secretary of the New Zealand Astronomical Society and he was President of Section A of the Australasian Association for the Advancement of Science meeting, Adelaide

7.
Manifold
–
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, each point of a manifold has a neighbourhood that is homeomorphic to the Euclidean space of dimension n. One-dimensional manifolds include lines and circles, but not figure eights, two-dimensional manifolds are also called surfaces. Although a manifold locally resembles Euclidean space, globally it may not, for example, the surface of the sphere is not a Euclidean space, but in a region it can be charted by means of map projections of the region into the Euclidean plane. When a region appears in two neighbouring charts, the two representations do not coincide exactly and a transformation is needed to pass from one to the other, Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. One important class of manifolds is the class of differentiable manifolds and this differentiable structure allows calculus to be done on manifolds. A Riemannian metric on a manifold allows distances and angles to be measured, symplectic manifolds serve as the phase spaces in the Hamiltonian formalism of classical mechanics, while four-dimensional Lorentzian manifolds model spacetime in general relativity. After a line, the circle is the simplest example of a topological manifold, Topology ignores bending, so a small piece of a circle is treated exactly the same as a small piece of a line. Consider, for instance, the top part of the circle, x2 + y2 =1. Any point of this arc can be described by its x-coordinate. So, projection onto the first coordinate is a continuous, and invertible, mapping from the arc to the open interval. Such functions along with the regions they map are called charts. Similarly, there are charts for the bottom, left, and right parts of the circle, together, these parts cover the whole circle and the four charts form an atlas for the circle. The top and right charts, χtop and χright respectively, overlap in their domain, Each map this part into the interval, though differently. Let a be any number in, then, T = χ r i g h t = χ r i g h t =1 − a 2 Such a function is called a transition map. The top, bottom, left, and right charts show that the circle is a manifold, charts need not be geometric projections, and the number of charts is a matter of some choice. These two charts provide a second atlas for the circle, with t =1 s Each chart omits a single point, either for s or for t and it can be proved that it is not possible to cover the full circle with a single chart. Viewed using calculus, the transition function T is simply a function between open intervals, which gives a meaning to the statement that T is differentiable

8.
Projective space
–
In mathematics, a projective space can be thought of as the set of lines through the origin of a vector space V. The idea of a projective space relates to perspective, more precisely to the way an eye or a camera projects a 3D scene to a 2D image. All points that lie on a line, intersecting with the entrance pupil of the camera, are projected onto a common image point. In this case, the space is R3 with the camera entrance pupil at the origin. Projective spaces can be studied as a field in mathematics. Geometric objects, such as points, lines, or planes, as a result, various relations between these objects can be described in a simpler way than is possible without homogeneous coordinates. Furthermore, various statements in geometry can be more consistent. For example, in the standard Euclidean geometry for the plane, in a projective representation of lines and points, however, such an intersection point exists even for parallel lines, and it can be computed in the same way as other intersection points. Other mathematical fields where projective spaces play a significant role are topology, the theory of Lie groups and algebraic groups, as outlined above, projective space is a geometric object that formalizes statements like Parallel lines intersect at infinity. For concreteness, we give the construction of the projective plane P2 in some detail. There are three equivalent definitions, The set of all lines in R3 passing through the origin, every such line meets the sphere of radius one centered in the origin exactly twice, say in P = and its antipodal point. P2 can also be described as the points on the sphere S2, for example, the point is identified with, etc. The usual way to write an element of the projective plane, the last formula goes under the name of homogeneous coordinates. In homogeneous coordinates, any point with z ≠0 is equivalent to, so there are two disjoint subsets of the projective plane, that consisting of the points = for z ≠0, and that consisting of the remaining points. The latter set can be subdivided similarly into two disjoint subsets, with points and, in the last case, x is necessarily nonzero, because the origin was not part of P2. This last point is equivalent to, geometrically, the first subset, which is isomorphic to R2, is in the image the yellow upper hemisphere, or equivalently the lower hemisphere. The second subset, isomorphic to R1, corresponds to the line, or, again. Finally we have the red point or the equivalent light red point and we thus have a disjoint decomposition P2 = R2 ⊔ R1 ⊔ point

9.
Fractal dimension
–
In that paper, Mandelbrot cited previous work by Lewis Fry Richardson describing the counter-intuitive notion that a coastlines measured length changes with the length of the measuring stick used. In terms of that notion, the dimension of a coastline quantifies how the number of scaled measuring sticks required to measure the coastline changes with the scale applied to the stick. There are several formal definitions of fractal dimension that build on this basic concept of change in detail with change in scale. One non-trivial example is the dimension of a Koch snowflake. It has a dimension of 1, but it is by no means a rectifiable curve. No small piece of it is line-like, but rather is composed of a number of segments joined at different angles. The fractal dimension of a curve can be explained intuitively thinking of a line as an object too detailed to be one-dimensional. Therefore its dimension might best be described not by its usual topological dimension of 1 but by its fractal dimension, a fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in scale. Several types of dimension can be measured theoretically and empirically. Fractal dimensions were first applied as an index characterizing complicated geometric forms for which the details seemed more important than the gross picture, for sets describing ordinary geometric shapes, the theoretical fractal dimension equals the sets familiar Euclidean or topological dimension. Thus, it is 0 for sets describing points,1 for sets describing lines,2 for sets describing surfaces, but this changes for fractal sets. If the theoretical fractal dimension of a set exceeds its topological dimension, the set is considered to have fractal geometry. Similarly, a surface with fractal dimension of 2.1 fills space very much like an ordinary surface, the relationship of an increasing fractal dimension with space-filling might be taken to mean fractal dimensions measure density, but that is not so, the two are not strictly correlated. Instead, a fractal dimension measures complexity, a related to certain key features of fractals, self-similarity. These features are evident in the two examples of fractal curves, both are curves with topological dimension of 1, so one might hope to be able to measure their length or slope, as with ordinary lines. But we cannot do either of these things, because fractal curves have complexity in the form of self-similarity, the self-similarity lies in the infinite scaling, and the detail in the defining elements of each set. The length between any two points on curves is undefined because the curves are theoretical constructs that never stop repeating themselves. Every smaller piece is composed of a number of scaled segments that look exactly like the first iteration

10.
Simplex
–
In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. Specifically, a k-simplex is a polytope which is the convex hull of its k +1 vertices. More formally, suppose the k +1 points u 0, …, u k ∈ R k are affinely independent, then, the simplex determined by them is the set of points C =. For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, a single point may be considered a 0-simplex, and a line segment may be considered a 1-simplex. A simplex may be defined as the smallest convex set containing the given vertices, a regular simplex is a simplex that is also a regular polytope. A regular n-simplex may be constructed from a regular -simplex by connecting a new vertex to all original vertices by the edge length. In topology and combinatorics, it is common to “glue together” simplices to form a simplicial complex, the associated combinatorial structure is called an abstract simplicial complex, in which context the word “simplex” simply means any finite set of vertices. A 1-simplex is a line segment, the convex hull of any nonempty subset of the n+1 points that define an n-simplex is called a face of the simplex. In particular, the hull of a subset of size m+1 is an m-simplex. The 0-faces are called the vertices, the 1-faces are called the edges, the -faces are called the facets, in general, the number of m-faces is equal to the binomial coefficient. Consequently, the number of m-faces of an n-simplex may be found in column of row of Pascals triangle, a simplex A is a coface of a simplex B if B is a face of A. Face and facet can have different meanings when describing types of simplices in a simplicial complex, see simplical complex for more detail. The regular simplex family is the first of three regular polytope families, labeled by Coxeter as αn, the two being the cross-polytope family, labeled as βn, and the hypercubes, labeled as γn. A fourth family, the infinite tessellation of hypercubes, he labeled as δn, an -simplex can be constructed as a join of an n-simplex and a point. An -simplex can be constructed as a join of an m-simplex, the two simplices are oriented to be completely normal from each other, with translation in a direction orthogonal to both of them. A 1-simplex is a joint of two points, ∨ =2, a general 2-simplex is the join of 3 points, ∨∨. An isosceles triangle is the join of a 1-simplex and a point, a general 3-simplex is the join of 4 points, ∨∨∨. A 3-simplex with mirror symmetry can be expressed as the join of an edge and 2 points, a 3-simplex with triangular symmetry can be expressed as the join of an equilateral triangle and 1 point,3. ∨ or ∨