1.
Perfect number
–
In number theory, a perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is, the sum of its positive divisors excluding the number itself. Equivalently, a number is a number that is half the sum of all of its positive divisors i. e. σ1 = 2n. This definition is ancient, appearing as early as Euclids Elements where it is called τέλειος ἀριθμός. Euclid also proved a formation rule whereby q /2 is a perfect number whenever q is a prime of the form 2 p −1 for prime p —what is now called a Mersenne prime. Much later, Euler proved that all even numbers are of this form. This is known as the Euclid–Euler theorem and it is not known whether there are any odd perfect numbers, nor whether infinitely many perfect numbers exist. The first perfect number is 6 and its proper divisors are 1,2, and 3, and 1 +2 +3 =6. Equivalently, the number 6 is equal to half the sum of all its positive divisors, the next perfect number is 28 =1 +2 +4 +7 +14. This is followed by the perfect numbers 496 and 8128, in about 300 BC Euclid showed that if 2p−1 is prime then 2p−1 is perfect. The first four numbers were the only ones known to early Greek mathematics. Philo of Alexandria in his first-century book On the creation mentions perfect numbers, claiming that the world was created in 6 days and the moon orbits in 28 days because 6 and 28 are perfect. Philo is followed by Origen, and by Didymus the Blind, st Augustine defines perfect numbers in City of God in the early 5th century AD, repeating the claim that God created the world in 6 days because 6 is the smallest perfect number. The Egyptian mathematician Ismail ibn Fallūs mentioned the next three numbers and listed a few more which are now known to be incorrect. Euclid proved that 2p−1 is a perfect number whenever 2p −1 is prime. Prime numbers of the form 2p −1 are known as Mersenne primes, after the seventeenth-century monk Marin Mersenne, for 2p −1 to be prime, it is necessary that p itself be prime. However, not all numbers of the form 2p −1 with a prime p are prime, in fact, Mersenne primes are very rare—of the 9,592 prime numbers p less than 100,000, 2p −1 is prime for only 28 of them. Nicomachus conjectured that every number is of the form 2p−1 where 2p −1 is prime. Ibn al-Haytham circa 1000 AD conjectured that every perfect number is of that form
2.
Mersenne prime
–
In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a number that can be written in the form Mn = 2n −1 for some integer n. They are named after Marin Mersenne, a French Minim friar, the first four Mersenne primes are 3,7,31, and 127. If n is a number then so is 2n −1. The definition is therefore unchanged when written Mp = 2p −1 where p is assumed prime, more generally, numbers of the form Mn = 2n −1 without the primality requirement are called Mersenne numbers. The smallest composite pernicious Mersenne number is 211 −1 =2047 =23 ×89, Mersenne primes Mp are also noteworthy due to their connection to perfect numbers. As of January 2016,49 Mersenne primes are known, the largest known prime number 274,207,281 −1 is a Mersenne prime. Since 1997, all newly found Mersenne primes have been discovered by the “Great Internet Mersenne Prime Search”, many fundamental questions about Mersenne primes remain unresolved. It is not even whether the set of Mersenne primes is finite or infinite. The Lenstra–Pomerance–Wagstaff conjecture asserts that there are infinitely many Mersenne primes,23 | M11,47 | M23,167 | M83,263 | M131,359 | M179,383 | M191,479 | M239, and 503 | M251. Since for these primes p, 2p +1 is congruent to 7 mod 8, so 2 is a quadratic residue mod 2p +1, since p is a prime, it must be p or 1. The first four Mersenne primes are M2 =3, M3 =7, M5 =31, a basic theorem about Mersenne numbers states that if Mp is prime, then the exponent p must also be prime. This follows from the identity 2 a b −1 = ⋅ = ⋅ and this rules out primality for Mersenne numbers with composite exponent, such as M4 =24 −1 =15 =3 ×5 = ×. Though the above examples might suggest that Mp is prime for all p, this is not the case. The evidence at hand does suggest that a randomly selected Mersenne number is more likely to be prime than an arbitrary randomly selected odd integer of similar size. Nonetheless, prime Mp appear to grow increasingly sparse as p increases, in fact, of the 2,270,720 prime numbers p up to 37,156,667, Mp is prime for only 45 of them. The lack of any simple test to determine whether a given Mersenne number is prime makes the search for Mersenne primes a difficult task, the Lucas–Lehmer primality test is an efficient primality test that greatly aids this task. The search for the largest known prime has somewhat of a cult following, consequently, a lot of computer power has been expended searching for new Mersenne primes, much of which is now done using distributed computing
3.
Prime number
–
A prime number is a natural number greater than 1 that has no positive divisors other than 1 and itself. A natural number greater than 1 that is not a number is called a composite number. For example,5 is prime because 1 and 5 are its only positive integer factors, the property of being prime is called primality. A simple but slow method of verifying the primality of a number n is known as trial division. It consists of testing whether n is a multiple of any integer between 2 and n, algorithms much more efficient than trial division have been devised to test the primality of large numbers. Particularly fast methods are available for numbers of forms, such as Mersenne numbers. As of January 2016, the largest known prime number has 22,338,618 decimal digits, there are infinitely many primes, as demonstrated by Euclid around 300 BC. There is no simple formula that separates prime numbers from composite numbers. However, the distribution of primes, that is to say, many questions regarding prime numbers remain open, such as Goldbachs conjecture, and the twin prime conjecture. Such questions spurred the development of branches of number theory. Prime numbers give rise to various generalizations in other domains, mainly algebra, such as prime elements. A natural number is called a number if it has exactly two positive divisors,1 and the number itself. Natural numbers greater than 1 that are not prime are called composite, among the numbers 1 to 6, the numbers 2,3, and 5 are the prime numbers, while 1,4, and 6 are not prime. 1 is excluded as a number, for reasons explained below. 2 is a number, since the only natural numbers dividing it are 1 and 2. Next,3 is prime, too,1 and 3 do divide 3 without remainder, however,4 is composite, since 2 is another number dividing 4 without remainder,4 =2 ·2. 5 is again prime, none of the numbers 2,3, next,6 is divisible by 2 or 3, since 6 =2 ·3. The image at the right illustrates that 12 is not prime,12 =3 ·4, no even number greater than 2 is prime because by definition, any such number n has at least three distinct divisors, namely 1,2, and n
4.
Euclid
–
Euclid, sometimes called Euclid of Alexandria to distinguish him from Euclides of Megara, was a Greek mathematician, often referred to as the father of geometry. He was active in Alexandria during the reign of Ptolemy I, in the Elements, Euclid deduced the principles of what is now called Euclidean geometry from a small set of axioms. Euclid also wrote works on perspective, conic sections, spherical geometry, number theory, Euclid is the anglicized version of the Greek name Εὐκλείδης, which means renowned, glorious. Very few original references to Euclid survive, so little is known about his life, the date, place and circumstances of both his birth and death are unknown and may only be estimated roughly relative to other people mentioned with him. He is rarely mentioned by name by other Greek mathematicians from Archimedes onward, the few historical references to Euclid were written centuries after he lived by Proclus c.450 AD and Pappus of Alexandria c.320 AD. Proclus introduces Euclid only briefly in his Commentary on the Elements, Proclus later retells a story that, when Ptolemy I asked if there was a shorter path to learning geometry than Euclids Elements, Euclid replied there is no royal road to geometry. This anecdote is questionable since it is similar to a story told about Menaechmus, a detailed biography of Euclid is given by Arabian authors, mentioning, for example, a birth town of Tyre. This biography is generally believed to be completely fictitious, however, this hypothesis is not well accepted by scholars and there is little evidence in its favor. The only reference that historians rely on of Euclid having written the Elements was from Proclus, although best known for its geometric results, the Elements also includes number theory. The geometrical system described in the Elements was long known simply as geometry, today, however, that system is often referred to as Euclidean geometry to distinguish it from other so-called non-Euclidean geometries that mathematicians discovered in the 19th century. In addition to the Elements, at least five works of Euclid have survived to the present day and they follow the same logical structure as Elements, with definitions and proved propositions. Data deals with the nature and implications of information in geometrical problems. On Divisions of Figures, which only partially in Arabic translation. It is similar to a first-century AD work by Heron of Alexandria, catoptrics, which concerns the mathematical theory of mirrors, particularly the images formed in plane and spherical concave mirrors. The attribution is held to be anachronistic however by J J OConnor, phaenomena, a treatise on spherical astronomy, survives in Greek, it is quite similar to On the Moving Sphere by Autolycus of Pitane, who flourished around 310 BC. Optics is the earliest surviving Greek treatise on perspective, in its definitions Euclid follows the Platonic tradition that vision is caused by discrete rays which emanate from the eye. One important definition is the fourth, Things seen under a greater angle appear greater, proposition 45 is interesting, proving that for any two unequal magnitudes, there is a point from which the two appear equal. Other works are attributed to Euclid, but have been lost
5.
Pietro Cataldi
–
Pietro Antonio Cataldi was an Italian mathematician. A citizen of Bologna, he taught mathematics and astronomy and also worked on military problems and his work included the development of continued fractions and a method for their representation. He was one of many mathematicians who attempted to prove Euclids fifth postulate, Cataldi discovered the sixth and seventh primes later to acquire the designation Mersenne primes by 1588. Although Cataldi also claimed that p=23,29,31 and 37 all also generate Mersenne primes, oConnor, John J. Robertson, Edmund F. Pietro Cataldi, MacTutor History of Mathematics archive, University of St Andrews
6.
Leonhard Euler
–
He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function. He is also known for his work in mechanics, fluid dynamics, optics, astronomy, Euler was one of the most eminent mathematicians of the 18th century, and is held to be one of the greatest in history. He is also considered to be the most prolific mathematician of all time. His collected works fill 60 to 80 quarto volumes, more than anybody in the field and he spent most of his adult life in Saint Petersburg, Russia, and in Berlin, then the capital of Prussia. A statement attributed to Pierre-Simon Laplace expresses Eulers influence on mathematics, Read Euler, read Euler, Leonhard Euler was born on 15 April 1707, in Basel, Switzerland to Paul III Euler, a pastor of the Reformed Church, and Marguerite née Brucker, a pastors daughter. He had two sisters, Anna Maria and Maria Magdalena, and a younger brother Johann Heinrich. Soon after the birth of Leonhard, the Eulers moved from Basel to the town of Riehen, Paul Euler was a friend of the Bernoulli family, Johann Bernoulli was then regarded as Europes foremost mathematician, and would eventually be the most important influence on young Leonhard. Eulers formal education started in Basel, where he was sent to live with his maternal grandmother. In 1720, aged thirteen, he enrolled at the University of Basel, during that time, he was receiving Saturday afternoon lessons from Johann Bernoulli, who quickly discovered his new pupils incredible talent for mathematics. In 1726, Euler completed a dissertation on the propagation of sound with the title De Sono, at that time, he was unsuccessfully attempting to obtain a position at the University of Basel. In 1727, he first entered the Paris Academy Prize Problem competition, Pierre Bouguer, who became known as the father of naval architecture, won and Euler took second place. Euler later won this annual prize twelve times, around this time Johann Bernoullis two sons, Daniel and Nicolaus, were working at the Imperial Russian Academy of Sciences in Saint Petersburg. In November 1726 Euler eagerly accepted the offer, but delayed making the trip to Saint Petersburg while he applied for a physics professorship at the University of Basel. Euler arrived in Saint Petersburg on 17 May 1727 and he was promoted from his junior post in the medical department of the academy to a position in the mathematics department. He lodged with Daniel Bernoulli with whom he worked in close collaboration. Euler mastered Russian and settled life in Saint Petersburg. He also took on a job as a medic in the Russian Navy. The Academy at Saint Petersburg, established by Peter the Great, was intended to improve education in Russia, as a result, it was made especially attractive to foreign scholars like Euler