1.
Tessellation
–
A tessellation of a flat surface is the tiling of a plane using one or more geometric shapes, called tiles, with no overlaps and no gaps. In mathematics, tessellations can be generalized to higher dimensions and a variety of geometries, a periodic tiling has a repeating pattern. The patterns formed by periodic tilings can be categorized into 17 wallpaper groups, a tiling that lacks a repeating pattern is called non-periodic. An aperiodic tiling uses a set of tile shapes that cannot form a repeating pattern. In the geometry of higher dimensions, a space-filling or honeycomb is called a tessellation of space. A real physical tessellation is a made of materials such as cemented ceramic squares or hexagons. Such tilings may be decorative patterns, or may have such as providing durable and water-resistant pavement. Historically, tessellations were used in Ancient Rome and in Islamic art such as in the decorative geometric tiling of the Alhambra palace, in the twentieth century, the work of M. C. Escher often made use of tessellations, both in ordinary Euclidean geometry and in geometry, for artistic effect. Tessellations are sometimes employed for decorative effect in quilting, Tessellations form a class of patterns in nature, for example in the arrays of hexagonal cells found in honeycombs. Tessellations were used by the Sumerians in building wall decorations formed by patterns of clay tiles, decorative mosaic tilings made of small squared blocks called tesserae were widely employed in classical antiquity, sometimes displaying geometric patterns. In 1619 Johannes Kepler made a documented study of tessellations. He wrote about regular and semiregular tessellations in his Harmonices Mundi, he was possibly the first to explore and to explain the structures of honeycomb. Some two hundred years later in 1891, the Russian crystallographer Yevgraf Fyodorov proved that every periodic tiling of the features one of seventeen different groups of isometries. Fyodorovs work marked the beginning of the mathematical study of tessellations. Other prominent contributors include Shubnikov and Belov, and Heinrich Heesch, in Latin, tessella is a small cubical piece of clay, stone or glass used to make mosaics. The word tessella means small square and it corresponds to the everyday term tiling, which refers to applications of tessellations, often made of glazed clay. Tessellation or tiling in two dimensions is a topic in geometry that studies how shapes, known as tiles, can be arranged to fill a plane without any gaps, according to a given set of rules
2.
Tetrahedral symmetry
–
A regular tetrahedron has 12 rotational symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation. The set of orientation-preserving symmetries forms a group referred to as the alternating subgroup A4 of S4, chiral and full are discrete point symmetries. They are among the point groups of the cubic crystal system. Seen in stereographic projection the edges of the tetrakis hexahedron form 6 circles in the plane, each of these 6 circles represent a mirror line in tetrahedral symmetry. The intersection of these meet at order 2 and 3 gyration points. T,332, +, or 23, of order 12 – chiral or rotational tetrahedral symmetry, there are three orthogonal 2-fold rotation axes, like chiral dihedral symmetry D2 or 222, with in addition four 3-fold axes, centered between the three orthogonal directions. This group is isomorphic to A4, the group on 4 elements, in fact it is the group of even permutations of the four 3-fold axes. The three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. Td, *332, or 43m, of order 24 – achiral or full tetrahedral symmetry and this group has the same rotation axes as T, but with six mirror planes, each through two 3-fold axes. The 2-fold axes are now S4 axes, td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, see also the isometries of the regular tetrahedron. This group has the same axes as T, with mirror planes through two of the orthogonal directions. The 3-fold axes are now S6 axes, and there is an inversion symmetry. Th is isomorphic to T × Z2, every element of Th is either an element of T, apart from these two normal subgroups, there is also a normal subgroup D2h, of type Dih2 × Z2 = Z2 × Z2 × Z2. It is the product of the normal subgroup of T with Ci. The quotient group is the same as above, of type Z3, the three elements of the latter are the identity, clockwise rotation, and anti-clockwise rotation, corresponding to permutations of the three orthogonal 2-fold axes, preserving orientation. It is the symmetry of a cube with on each face a line segment dividing the face into two rectangles, such that the line segments of adjacent faces do not meet at the edge. The symmetries correspond to the permutations of the body diagonals
3.
Octahedral symmetry
–
A regular octahedron has 24 rotational symmetries, and a symmetry order of 48 including transformations that combine a reflection and a rotation. A cube has the set of symmetries, since it is the dual of an octahedron. Chiral and full octahedral symmetry are the point symmetries with the largest symmetry groups compatible with translational symmetry. They are among the point groups of the cubic crystal system. But as it is also the direct product S4 × S2, one can identify the elements of S4 as a ∈ [0,4. ). So e. g. the identity is represented as 0, the pairs can be seen in the six files below. Each file is denoted by the m ∈, and the position of each permutation in the file corresponds to the n ∈. A rotoreflection is a combination of rotation and reflection,7 ′ ∘4 =19 ′,7 ′ ∘22 =17 ′, The reflection 7 ′ applied on the 90° rotation 22 gives the 90° rotoreflection 17 ′. O,432, or + of order 24, is chiral octahedral symmetry or rotational octahedral symmetry. This group is like chiral tetrahedral symmetry T, but the C2 axes are now C4 axes, Td and O are isomorphic as abstract groups, they both correspond to S4, the symmetric group on 4 objects. Td is the union of T and the set obtained by combining each element of O \ T with inversion, O is the rotation group of the cube and the regular octahedron. Oh, *432, or m3m of order 48 - achiral octahedral symmetry or full octahedral symmetry and this group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of Td and Th. This group is isomorphic to S4. C4, and is the symmetry group of the cube. It is the group for n =3. See also the isometries of the cube, with the 4-fold axes as coordinate axes, a fundamental domain of Oh is given by 0 ≤ x ≤ y ≤ z. An object with symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z =1. Ax + by + cz =1 gives a polyhedron with 48 faces, faces are 8-by-8 combined to larger faces for a = b =0 and 6-by-6 for a = b = c. The 9 mirror lines of full octahedral symmetry can be divided into two subgroups of 3 and 6, representing in two orthogonal subsymmetries, D2h, and Td, D2h symmetry can be doubled to D4h by restoring 2 mirrors from one of three orientations
4.
Small stellated dodecahedron
–
In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 pentagrammic faces, with five meeting at each vertex. It shares the vertex arrangement as the convex regular icosahedron. It also shares the same edge arrangement with the great icosahedron and it is the second of four stellations of the dodecahedron. It is central to two lithographs by M. C and its convex hull is the regular convex icosahedron. It also shares its edges with the great icosahedron, compound of small stellated dodecahedron and great dodecahedron Small stellated dodecahedron programing Wenninger, Magnus. Weber, Matthias, Keplers small stellated dodecahedron as a Riemann surface,220, 167–182 Eric W. Weisstein, Small stellated dodecahedron at MathWorld
5.
Platonic solid
–
In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by congruent regular polygonal faces with the number of faces meeting at each vertex. Five solids meet those criteria, Geometers have studied the mathematical beauty and they are named for the ancient Greek philosopher Plato who theorized in his dialogue, the Timaeus, that the classical elements were made of these regular solids. The Platonic solids have been known since antiquity, dice go back to the dawn of civilization with shapes that predated formal charting of Platonic solids. The ancient Greeks studied the Platonic solids extensively, some sources credit Pythagoras with their discovery. In any case, Theaetetus gave a description of all five. The Platonic solids are prominent in the philosophy of Plato, their namesake, Plato wrote about them in the dialogue Timaeus c.360 B. C. in which he associated each of the four classical elements with a regular solid. Earth was associated with the cube, air with the octahedron, water with the icosahedron, there was intuitive justification for these associations, the heat of fire feels sharp and stabbing. Air is made of the octahedron, its components are so smooth that one can barely feel it. Water, the icosahedron, flows out of hand when picked up. By contrast, a highly nonspherical solid, the hexahedron represents earth and these clumsy little solids cause dirt to crumble and break when picked up in stark difference to the smooth flow of water. Moreover, the cubes being the regular solid that tessellates Euclidean space was believed to cause the solidity of the Earth. Of the fifth Platonic solid, the dodecahedron, Plato obscurely remarks. the god used for arranging the constellations on the whole heaven. Aristotle added an element, aithēr and postulated that the heavens were made of this element. Euclid completely mathematically described the Platonic solids in the Elements, the last book of which is devoted to their properties, propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid Euclid finds the ratio of the diameter of the sphere to the edge length. In Proposition 18 he argues there are no further convex regular polyhedra. Andreas Speiser has advocated the view that the construction of the 5 regular solids is the goal of the deductive system canonized in the Elements
6.
Tetrahedron
–
In geometry, a tetrahedron, also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the ordinary convex polyhedra, the tetrahedron is the three-dimensional case of the more general concept of a Euclidean simplex. The tetrahedron is one kind of pyramid, which is a polyhedron with a polygon base. In the case of a tetrahedron the base is a triangle, like all convex polyhedra, a tetrahedron can be folded from a single sheet of paper. For any tetrahedron there exists a sphere on which all four vertices lie, a regular tetrahedron is one in which all four faces are equilateral triangles. It is one of the five regular Platonic solids, which have known since antiquity. In a regular tetrahedron, not only are all its faces the same size and shape, regular tetrahedra alone do not tessellate, but if alternated with regular octahedra they form the alternated cubic honeycomb, which is a tessellation. The regular tetrahedron is self-dual, which means that its dual is another regular tetrahedron, the compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula. This form has Coxeter diagram and Schläfli symbol h, the tetrahedron in this case has edge length 2√2. Inverting these coordinates generates the dual tetrahedron, and the together form the stellated octahedron. In other words, if C is the centroid of the base and this follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other. The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron, the symmetries of a regular tetrahedron correspond to half of those of a cube, those that map the tetrahedra to themselves, and not to each other. The tetrahedron is the only Platonic solid that is not mapped to itself by point inversion, the regular tetrahedron has 24 isometries, forming the symmetry group Td, isomorphic to the symmetric group, S4. The first corresponds to the A2 Coxeter plane, the two skew perpendicular opposite edges of a regular tetrahedron define a set of parallel planes. When one of these intersects the tetrahedron the resulting cross section is a rectangle. When the intersecting plane is one of the edges the rectangle is long. When halfway between the two edges the intersection is a square, the aspect ratio of the rectangle reverses as you pass this halfway point. For the midpoint square intersection the resulting boundary line traverses every face of the tetrahedron similarly, if the tetrahedron is bisected on this plane, both halves become wedges
7.
Octahedron
–
In geometry, an octahedron is a polyhedron with eight faces, twelve edges, and six vertices. A regular octahedron is a Platonic solid composed of eight equilateral triangles, a regular octahedron is the dual polyhedron of a cube. It is a square bipyramid in any of three orthogonal orientations and it is also a triangular antiprism in any of four orientations. An octahedron is the case of the more general concept of a cross polytope. A regular octahedron is a 3-ball in the Manhattan metric, the second and third correspond to the B2 and A2 Coxeter planes. The octahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. An octahedron with edge length √2 can be placed with its center at the origin and its vertices on the coordinate axes, the Cartesian coordinates of the vertices are then. In an x–y–z Cartesian coordinate system, the octahedron with center coordinates, additionally the inertia tensor of the stretched octahedron is I =. These reduce to the equations for the regular octahedron when x m = y m = z m = a 22, the interior of the compound of two dual tetrahedra is an octahedron, and this compound, called the stella octangula, is its first and only stellation. Correspondingly, an octahedron is the result of cutting off from a regular tetrahedron. One can also divide the edges of an octahedron in the ratio of the mean to define the vertices of an icosahedron. There are five octahedra that define any given icosahedron in this fashion, octahedra and tetrahedra can be alternated to form a vertex, edge, and face-uniform tessellation of space, called the octet truss by Buckminster Fuller. This is the only such tiling save the regular tessellation of cubes, another is a tessellation of octahedra and cuboctahedra. The octahedron is unique among the Platonic solids in having a number of faces meeting at each vertex. Consequently, it is the member of that group to possess mirror planes that do not pass through any of the faces. Using the standard nomenclature for Johnson solids, an octahedron would be called a square bipyramid, truncation of two opposite vertices results in a square bifrustum. The octahedron is 4-connected, meaning that it takes the removal of four vertices to disconnect the remaining vertices and it is one of only four 4-connected simplicial well-covered polyhedra, meaning that all of the maximal independent sets of its vertices have the same size
8.
Cuboctahedron
–
In geometry, a cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, as such, it is a quasiregular polyhedron, i. e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. Its dual polyhedron is the rhombic dodecahedron, the cuboctahedron was probably known to Plato, Herons Definitiones quotes Archimedes as saying that Plato knew of a solid made of 8 triangles and 6 squares. Heptaparallelohedron Fuller applied the name Dymaxion to this shape, used in a version of the Dymaxion map. He also called it the Vector Equilibrium and he called a cuboctahedron consisting of rigid struts connected by flexible vertices a jitterbug. With Oh symmetry, order 48, it is a cube or rectified octahedron With Td symmetry, order 24. With D3d symmetry, order 12, it is a triangular gyrobicupola. The area A and the volume V of the cuboctahedron of edge length a are, the cuboctahedron has four special orthogonal projections, centered on a vertex, an edge, and the two types of faces, triangular and square. The last two correspond to the B2 and A2 Coxeter planes, the skew projections show a square and hexagon passing through the center of the cuboctahedron. The cuboctahedron can also be represented as a tiling. This projection is conformal, preserving angles but not areas or lengths, straight lines on the sphere are projected as circular arcs on the plane. The cuboctahedrons 12 vertices can represent the vectors of the simple Lie group A3. With the addition of 6 vertices of the octahedron, these represent the 18 root vectors of the simple Lie group B3. The cuboctahedron can be dissected into two triangular cupolas by a common hexagon passing through the center of the cuboctahedron, if these two triangular cupolas are twisted so triangles and squares line up, Johnson solid J27, the triangular orthobicupola, is created. The cuboctahedron can also be dissected into 6 square pyramids and 8 tetrahedra meeting at a central point and this dissection is expressed in the alternated cubic honeycomb where pairs of square pyramids are combined into octahedra. A cuboctahedron can be obtained by taking a cross section of a four-dimensional 16-cell. Its first stellation is the compound of a cube and its dual octahedron, the cuboctahedron is a rectified cube and also a rectified octahedron. It is also a cantellated tetrahedron, with this construction it is given the Wythoff symbol,33 |2
9.
Archimedean solid
–
In geometry, an Archimedean solid is one of the 13 solids first enumerated by Archimedes. They are the semi-regular convex polyhedrons composed of regular meeting in identical vertices, excluding the 5 Platonic solids. They differ from the Johnson solids, whose regular polygonal faces do not meet in identical vertices, identical vertices means that for any two vertices, there is a global isometry of the entire solid that takes one vertex to the other. Excluding these two families, there are 13 Archimedean solids. All the Archimedan solids can be made via Wythoff constructions from the Platonic solids with tetrahedral, octahedral and icosahedral symmetry, the Archimedean solids take their name from Archimedes, who discussed them in a now-lost work. Pappus refers to it, stating that Archimedes listed 13 polyhedra, kepler may have also found the elongated square gyrobicupola, at least, he once stated that there were 14 Archimedean solids. However, his published enumeration only includes the 13 uniform polyhedra, here the vertex configuration refers to the type of regular polygons that meet at any given vertex. For example, a configuration of means that a square, hexagon. Some definitions of semiregular polyhedron include one more figure, the square gyrobicupola or pseudo-rhombicuboctahedron. The number of vertices is 720° divided by the angle defect. The cuboctahedron and icosidodecahedron are edge-uniform and are called quasi-regular, the duals of the Archimedean solids are called the Catalan solids. Together with the bipyramids and trapezohedra, these are the face-uniform solids with regular vertices, the snub cube and snub dodecahedron are known as chiral, as they come in a left-handed form and right-handed form. When something comes in forms which are each others three-dimensional mirror image. The different Archimedean and Platonic solids can be related to each other using a handful of general constructions, starting with a Platonic solid, truncation involves cutting away of corners. To preserve symmetry, the cut is in a perpendicular to the line joining a corner to the center of the polyhedron and is the same for all corners. Depending on how much is truncated, different Platonic and Archimedean solids can be created, expansion or cantellation involves moving each face away from the center and taking the convex hull. Expansion with twisting also involves rotating the faces, thus breaking the rectangles corresponding to edges into triangles, the last construction we use here is truncation of both corners and edges. Ignoring scaling, expansion can also be viewed as truncation of corners and edges, note the duality between the cube and the octahedron, and between the dodecahedron and the icosahedron
10.
Dodecahedron
–
In geometry, a dodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the dodecahedron, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form, all of these have icosahedral symmetry, order 120. The pyritohedron is a pentagonal dodecahedron, having the same topology as the regular one. The rhombic dodecahedron, seen as a case of the pyritohedron has octahedral symmetry. The elongated dodecahedron and trapezo-rhombic dodecahedron variations, along with the rhombic dodecahedra are space-filling, there are a large number of other dodecahedra. The convex regular dodecahedron is one of the five regular Platonic solids, the dual polyhedron is the regular icosahedron, having five equilateral triangles around each vertex. Like the regular dodecahedron, it has twelve pentagonal faces. However, the pentagons are not constrained to be regular, and its 30 edges are divided into two sets – containing 24 and 6 edges of the same length. The only axes of symmetry are three mutually perpendicular twofold axes and four threefold axes. Note that the regular dodecahedron can occur as a shape for quasicrystals with icosahedral symmetry. Its name comes from one of the two common crystal habits shown by pyrite, the one being the cube. The coordinates of the eight vertices of the cube are, The coordinates of the 12 vertices of the cross-edges are. When h =1, the six cross-edges degenerate to points, when h =0, the cross-edges are absorbed in the facets of the cube, and the pyritohedron reduces to a cube. When h = √5 − 1/2, the inverse of the golden ratio, a reflected pyritohedron is made by swapping the nonzero coordinates above. The two pyritohedra can be superimposed to give the compound of two dodecahedra as seen in the image here, the regular dodecahedron represents a special intermediate case where all edges and angles are equal. A tetartoid is a dodecahedron with chiral tetrahedral symmetry, like the regular dodecahedron, it has twelve identical pentagonal faces, with three meeting in each of the 20 vertices. However, the pentagons are not regular and the figure has no fivefold symmetry axes, although regular dodecahedra do not exist in crystals, the tetartoid form does
11.
Great icosahedron
–
In geometry, the great icosahedron is one of four Kepler-Poinsot polyhedra, with Schläfli symbol and Coxeter-Dynkin diagram of. It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence, the great icosahedron can be constructed a uniform snub, with different colored faces and only tetrahedral symmetry. This construction can be called a tetrahedron or retrosnub tetratetrahedron, similar to the snub tetrahedron symmetry of the icosahedron. It can also be constructed with 2 colors of triangles and pyritohedral symmetry as, or and it shares the same vertex arrangement as the regular convex icosahedron. It also shares the same arrangement as the small stellated dodecahedron. A truncation operation, repeatedly applied to the icosahedron, produces a sequence of uniform polyhedra. Truncating edges down to points produces the great icosidodecahedron as a great icosahedron. The process completes as a birectification, reducing the original faces down to points, coxeter, Harold Scott MacDonald, Du Val, P. Flather, H. T. Petrie, J. F. Coxeter, Regular Polytopes, Dover edition, ISBN 0-486-61480-8,3.66.2 Stellating the Platonic solids, pp. 96-104 Eric W. Weisstein, Great icosahedron at MathWorld
12.
Great stellated dodecahedron
–
In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol. It is one of four regular polyhedra. It is composed of 12 intersecting pentagrammic faces, with three meeting at each vertex. It shares its vertex arrangement with the regular dodecahedron, as well as being a stellation of a dodecahedron and it is the only dodecahedral stellation with this property, apart from the dodecahedron itself. Its dual, the icosahedron, is related in a similar fashion to the icosahedron. Shaving the triangular pyramids off results in an icosahedron, if the pentagrammic faces are broken into triangles, it is topologically related to the triakis icosahedron, with the same face connectivity, but much taller isosceles triangle faces. A truncation process applied to the great stellated dodecahedron produces a series of uniform polyhedra, truncating edges down to points produces the great icosidodecahedron as a rectified great stellated dodecahedron. The process completes as a birectification, reducing the original faces down to points, eric W. Weisstein, Great stellated dodecahedron at MathWorld