Commutative algebra

Commutative algebra is the branch of algebra that studies commutative rings, their ideals, modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings. Commutative algebra is the main technical tool in the local study of schemes; the study of rings that are not commutative is known as noncommutative algebra. Commutative algebra is the study of the rings occurring in algebraic number theory and algebraic geometry. In algebraic number theory, the rings of algebraic integers are Dedekind rings, which constitute therefore an important class of commutative rings. Considerations related to modular arithmetic have led to the notion of a valuation ring; the restriction of algebraic field extensions to subrings has led to the notions of integral extensions and integrally closed domains as well as the notion of ramification of an extension of valuation rings. The notion of localization of a ring is one of the main differences between commutative algebra and the theory of non-commutative rings.

It leads to an important class of commutative rings, the local rings that have only one maximal ideal. The set of the prime ideals of a commutative ring is equipped with a topology, the Zariski topology. All these notions are used in algebraic geometry and are the basic technical tools for the definition of scheme theory, a generalization of algebraic geometry introduced by Grothendieck. Many other notions of commutative algebra are counterparts of geometrical notions occurring in algebraic geometry; this is the case of Krull dimension, primary decomposition, regular rings, Cohen–Macaulay rings, Gorenstein rings and many other notions. The subject, first known as ideal theory, began with Richard Dedekind's work on ideals, itself based on the earlier work of Ernst Kummer and Leopold Kronecker. David Hilbert introduced the term ring to generalize the earlier term number ring. Hilbert introduced a more abstract approach to replace the more concrete and computationally oriented methods grounded in such things as complex analysis and classical invariant theory.

In turn, Hilbert influenced Emmy Noether, who recast many earlier results in terms of an ascending chain condition, now known as the Noetherian condition. Another important milestone was the work of Hilbert's student Emanuel Lasker, who introduced primary ideals and proved the first version of the Lasker–Noether theorem; the main figure responsible for the birth of commutative algebra as a mature subject was Wolfgang Krull, who introduced the fundamental notions of localization and completion of a ring, as well as that of regular local rings. He established the concept of the Krull dimension of a ring, first for Noetherian rings before moving on to expand his theory to cover general valuation rings and Krull rings. To this day, Krull's principal ideal theorem is considered the single most important foundational theorem in commutative algebra; these results paved the way for the introduction of commutative algebra into algebraic geometry, an idea which would revolutionize the latter subject.

Much of the modern development of commutative algebra emphasizes modules. Both ideals of a ring R and R-algebras are special cases of R-modules, so module theory encompasses both ideal theory and the theory of ring extensions. Though it was incipient in Kronecker's work, the modern approach to commutative algebra using module theory is credited to Krull and Noether. In mathematics, more in the area of modern algebra known as ring theory, a Noetherian ring, named after Emmy Noether, is a ring in which every non-empty set of ideals has a maximal element. Equivalently, a ring is Noetherian; the notion of a Noetherian ring is of fundamental importance in both commutative and noncommutative ring theory, due to the role it plays in simplifying the ideal structure of a ring. For instance, the ring of integers and the polynomial ring over a field are both Noetherian rings, such theorems as the Lasker–Noether theorem, the Krull intersection theorem, the Hilbert's basis theorem hold for them. Furthermore, if a ring is Noetherian it satisfies the descending chain condition on prime ideals.

This property suggests a deep theory of dimension for Noetherian rings beginning with the notion of the Krull dimension. Theorem. If R is a left Noetherian ring the polynomial ring R is a left Noetherian ring. Hilbert's basis theorem has some immediate corollaries: By induction we see that R {\displays

Mathematics

Mathematics includes the study of such topics as quantity, structure and change. Mathematicians use patterns to formulate new conjectures; when mathematical structures are good models of real phenomena mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back; the research required to solve mathematical problems can take years or centuries of sustained inquiry. Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements. Since the pioneering work of Giuseppe Peano, David Hilbert, others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a slow pace until the Renaissance, when mathematical innovations interacting with new scientific discoveries led to a rapid increase in the rate of mathematical discovery that has continued to the present day.

Mathematics is essential in many fields, including natural science, medicine and the social sciences. Applied mathematics has led to new mathematical disciplines, such as statistics and game theory. Mathematicians engage in pure mathematics without having any application in mind, but practical applications for what began as pure mathematics are discovered later; the history of mathematics can be seen as an ever-increasing series of abstractions. The first abstraction, shared by many animals, was that of numbers: the realization that a collection of two apples and a collection of two oranges have something in common, namely quantity of their members; as evidenced by tallies found on bone, in addition to recognizing how to count physical objects, prehistoric peoples may have recognized how to count abstract quantities, like time – days, years. Evidence for more complex mathematics does not appear until around 3000 BC, when the Babylonians and Egyptians began using arithmetic and geometry for taxation and other financial calculations, for building and construction, for astronomy.

The most ancient mathematical texts from Mesopotamia and Egypt are from 2000–1800 BC. Many early texts mention Pythagorean triples and so, by inference, the Pythagorean theorem seems to be the most ancient and widespread mathematical development after basic arithmetic and geometry, it is in Babylonian mathematics that elementary arithmetic first appear in the archaeological record. The Babylonians possessed a place-value system, used a sexagesimal numeral system, still in use today for measuring angles and time. Beginning in the 6th century BC with the Pythagoreans, the Ancient Greeks began a systematic study of mathematics as a subject in its own right with Greek mathematics. Around 300 BC, Euclid introduced the axiomatic method still used in mathematics today, consisting of definition, axiom and proof, his textbook Elements is considered the most successful and influential textbook of all time. The greatest mathematician of antiquity is held to be Archimedes of Syracuse, he developed formulas for calculating the surface area and volume of solids of revolution and used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, in a manner not too dissimilar from modern calculus.

Other notable achievements of Greek mathematics are conic sections, trigonometry (Hipparchus of Nicaea, the beginnings of algebra. The Hindu–Arabic numeral system and the rules for the use of its operations, in use throughout the world today, evolved over the course of the first millennium AD in India and were transmitted to the Western world via Islamic mathematics. Other notable developments of Indian mathematics include the modern definition of sine and cosine, an early form of infinite series. During the Golden Age of Islam during the 9th and 10th centuries, mathematics saw many important innovations building on Greek mathematics; the most notable achievement of Islamic mathematics was the development of algebra. Other notable achievements of the Islamic period are advances in spherical trigonometry and the addition of the decimal point to the Arabic numeral system. Many notable mathematicians from this period were Persian, such as Al-Khwarismi, Omar Khayyam and Sharaf al-Dīn al-Ṭūsī. During the early modern period, mathematics began to develop at an accelerating pace in Western Europe.

The development of calculus by Newton and Leibniz in the 17th century revolutionized mathematics. Leonhard Euler was the most notable mathematician of the 18th century, contributing numerous theorems and discoveries; the foremost mathematician of the 19th century was the German mathematician Carl Friedrich Gauss, who made numerous contributions to fields such as algebra, differential geometry, matrix theory, number theory, statistics. In the early 20th century, Kurt Gödel transformed mathematics by publishing his incompleteness theorems, which show that any axiomatic system, consistent will contain unprovable propositions. Mathematics has since been extended, there has been a fruitful interaction between mathematics and science, to

Algebra

Algebra is one of the broad parts of mathematics, together with number theory and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols, it includes everything from elementary equation solving to the study of abstractions such as groups and fields. The more basic parts of algebra are called elementary algebra. Elementary algebra is considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied by professional mathematicians. Elementary algebra differs from arithmetic in the use of abstractions, such as using letters to stand for numbers that are either unknown or allowed to take on many values. For example, in x + 2 = 5 the letter x is unknown, but the law of inverses can be used to discover its value: x = 3. In E = mc2, the letters E and m are variables, the letter c is a constant, the speed of light in a vacuum.

Algebra gives methods for writing formulas and solving equations that are much clearer and easier than the older method of writing everything out in words. The word algebra is used in certain specialized ways. A special kind of mathematical object in abstract algebra is called an "algebra", the word is used, for example, in the phrases linear algebra and algebraic topology. A mathematician who does research in algebra is called an algebraist; the word algebra comes from the Arabic الجبر from the title of the book Ilm al-jabr wa'l-muḳābala by the Persian mathematician and astronomer al-Khwarizmi. The word entered the English language during the fifteenth century, from either Spanish, Italian, or Medieval Latin, it referred to the surgical procedure of setting broken or dislocated bones. The mathematical meaning was first recorded in the sixteenth century; the word "algebra" has several related meanings as a single word or with qualifiers. As a single word without an article, "algebra" names a broad part of mathematics.

As a single word with an article or in plural, "an algebra" or "algebras" denotes a specific mathematical structure, whose precise definition depends on the author. The structure has an addition, a scalar multiplication; when some authors use the term "algebra", they make a subset of the following additional assumptions: associative, unital, and/or finite-dimensional. In universal algebra, the word "algebra" refers to a generalization of the above concept, which allows for n-ary operations. With a qualifier, there is the same distinction: Without an article, it means a part of algebra, such as linear algebra, elementary algebra, or abstract algebra. With an article, it means an instance of some abstract structure, like a Lie algebra, an associative algebra, or a vertex operator algebra. Sometimes both meanings exist for the same qualifier, as in the sentence: Commutative algebra is the study of commutative rings, which are commutative algebras over the integers. Algebra began with letters standing for numbers.

This allowed proofs of properties. For example, in the quadratic equation a x 2 + b x + c = 0, a, b, c can be any numbers whatsoever, the quadratic formula can be used to and find the values of the unknown quantity x which satisfy the equation; that is to say. And in current teaching, the study of algebra starts with the solving of equations such as the quadratic equation above. More general questions, such as "does an equation have a solution?", "how many solutions does an equation have?", "what can be said about the nature of the solutions?" are considered. These questions led extending algebra to non-numerical objects, such as permutations, vectors and polynomials; the structural properties of these non-numerical objects were abstracted into algebraic structures such as groups and fields. Before the 16th century, mathematics was divided into only two subfields and geometry. Though some methods, developed much earlier, may be considered nowadays as algebra, the emergence of algebra and, soon thereafter, of infinitesimal calculus as subfields of mathematics only dates from the 16th or 17th century.

From the second half of 19th century on, many new fields of mathematics appeared, most of which made use of both arithmetic and geometry, all of which used algebra. Today, algebra has grown until it includes many branches of mathematics, as can be seen in the Mathematics Subject Classification where none of the first level areas is called algebra. Today algebra in