# Logarithmic scale

A **logarithmic scale** is a nonlinear scale used when there is a large range of quantities. Common uses include earthquake strength, sound loudness, light intensity, and pH of solutions.

It is based on orders of magnitude, rather than a standard linear scale, so the value represented by each equidistant mark on the scale is the value at the previous mark multiplied by a constant.

Logarithmic scales are also used in slide rules for multiplying or dividing numbers by adding or subtracting lengths on the scales.

## Contents

## Common usages[edit]

The following are examples of commonly used logarithmic scales, where a larger quantity results in a higher value:

- Richter magnitude scale and moment magnitude scale (MMS) for strength of earthquakes and movement in the earth
- bel and decibel for acoustic power (loudness)
- neper for amplitude, field and power quantities
- cent, minor second, major second, and octave for the relative pitch of notes in music
- logit for odds in statistics
- Palermo Technical Impact Hazard Scale
- logarithmic timeline
- counting f-stops for ratios of photographic exposure
- the rule of 'nines' used for rating low probabilities
- entropy in thermodynamics
- information in information theory
- particle-size-distribution curves of soil

The following are examples of commonly used logarithmic scales, where a larger quantity results in a lower (or negative) value:

- pH for acidity
- stellar magnitude scale for brightness of stars
- Krumbein scale for particle size in geology
- absorbance of light by transparent samples

Some of our senses operate in a logarithmic fashion (Weber–Fechner law), which makes logarithmic scales for these input quantities especially appropriate; in particular our sense of hearing perceives equal ratios of frequencies as equal differences in pitch. In addition, studies of young children in an isolated tribe have shown logarithmic scales to be the most natural display of numbers in some cultures,^{[1]} it can also be used for geographical purposes like for measuring the speed of earthquakes.

## Graphic representation[edit]

The top left graph is linear in the X and Y axis, and the Y-axis ranges from 0 to 10. A base-10 log scale is used for the Y axis of the bottom left graph, and the Y axis ranges from 0.1 to 1,000.

The top right graph uses a log-10 scale for just the X axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y axis.

Presentation of data on a logarithmic scale can be helpful when the data:

- covers a large range of values, since the use of the logarithms of the values rather than the actual values reduces a wide range to a more manageable size;
- may contain exponential laws or power laws, since these will show up as straight lines.

A slide rule has logarithmic scales, and nomograms often employ logarithmic scales, the geometric mean of two numbers is midway between the numbers. Before the advent of computer graphics, logarithmic graph paper was a commonly used scientific tool.

### Log–log plots[edit]

If both the vertical and horizontal axes of a plot are scaled logarithmically, the plot is referred to as a log–log plot.

### Semi logarithmic plots[edit]

If only the ordinate or abscissa is scaled logarithmically, the plot is referred to as a semi-logarithmic plot.

## Logarithmic units[edit]

A **logarithmic unit** is an abstract mathematical unit that can be used to express any quantity (physical or mathematical) that is defined on a logarithmic scale, that is, as being proportional to the value of a logarithm function. Here, a given logarithmic unit will be denoted using the notation [log *n*], where *n* is a positive real number, and [log ] here denotes the indefinite logarithm function .

### Examples[edit]

Examples of logarithmic units include common units of information and entropy, such as the *bit* [log 2]^{[dubious – discuss]} and the *byte* 8[log 2] = [log 256], also the *nat* [log e] and the *ban* [log 10]; units of relative signal strength magnitude such as the *decibel* 0.1[log 10] and *bel* [log 10], *neper* [log e], and other logarithmic-scale units such as the Richter magnitude scale point [log 10] or (more generally) the corresponding order-of-magnitude unit sometimes referred to as a *factor of ten* or *decade* (here meaning [log 10], not 10 years). Musical pitch intervals are also logarithmic units on a frequency scale, such as octave [log 2], semitone, cent, etc.

### Motivation[edit]

The motivation behind the concept of logarithmic units is that defining a quantity on a logarithmic scale in terms of a logarithm to a specific base amounts to making a (totally arbitrary) choice of a unit of measurement for that quantity, one that corresponds to the specific (and equally arbitrary) logarithm base that was selected. Due to the identity

the logarithms of any given number *a* to two different bases (here *b* and *c*) differ only by the constant factor log_{c} *b*. This constant factor can be considered to represent the conversion factor for converting a numerical representation of the pure (indefinite) logarithmic quantity Log(*a*) from one arbitrary unit of measurement (the [log *c*] unit) to another (the [log *b*] unit), since

For example, Boltzmann's standard definition of entropy *S* = *k* ln *W* (where *W* is the number of ways of arranging a system and *k* is Boltzmann's constant) can also be written more simply as just *S* = Log(*W*), where "Log" here denotes the indefinite logarithm, and we let *k* = [log e]; that is, we identify the physical entropy unit *k* with the mathematical unit [log e]. This identity works because

Thus, we can interpret Boltzmann's constant as being simply the expression (in terms of more standard physical units) of the abstract logarithmic unit [log e] that is needed to convert the dimensionless pure-number quantity ln *W* (which uses an arbitrary choice of base, namely e) to the more fundamental pure logarithmic quantity Log(*W*), which implies no particular choice of base, and thus no particular choice of physical unit for measuring entropy.

## See also[edit]

### Units of information[edit]

### Units of relative amplitude or power[edit]

### Scale[edit]

### Applications[edit]

## References[edit]

**^**"Slide Rule Sense: Amazonian Indigenous Culture Demonstrates Universal Mapping Of Number Onto Space". ScienceDaily. 2008-05-30. Retrieved 2008-05-31.

## Further reading[edit]

- Dehaene, Stanislas; Izard, Véronique; Spelke, Elizabeth; Pica, Pierre (2008). "Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures".
*Science*. American Association for the Advancement of Science.**320**(5880): 1217–20. Bibcode:2008Sci...320.1217D. doi:10.1126/science.1156540. PMC 2610411 . PMID 18511690. - Tuffentsammer, Karl; Schumacher, P. (1953). "Normzahlen – die einstellige Logarithmentafel des Ingenieurs" [Preferred numbers - the engineer's single-digit logarithm table].
*Werkstattechnik und Maschinenbau*(in German).**43**(4): 156. - Tuffentsammer, Karl (1956). "Das Dezilog, eine Brücke zwischen Logarithmen, Dezibel, Neper und Normzahlen" [The decilog, a bridge between logarithms, decibel, neper and preferred numbers].
*VDI-Zeitschrift*(in German).**98**: 267–274. - Ries, Clemens (1962).
*Normung nach Normzahlen*[*Standardization by preferred numbers*] (in German) (1 ed.). Berlin, Germany: Duncker & Humblot Verlag . ISBN 3-42801242-9. (135 pages) - Paulin, Eugen (2007-09-01).
*Logarithmen, Normzahlen, Dezibel, Neper, Phon - natürlich verwandt!*[*Logarithms, preferred numbers, decibel, neper, phon - naturally related!*] (PDF) (in German). Archived (PDF) from the original on 2016-12-18. Retrieved 2016-12-18.

## External links[edit]

Wikimedia Commons has media related to .Logarithmic scale |

- "GNU Emacs Calc Manual: Logarithmic Units".
*Gnu.org*. Retrieved 2016-11-23.