Precambrian
The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic eon, named after Cambria, the Latinised name for Wales, where rocks from this age were first studied; the Precambrian accounts for 88% of the Earth's geologic time. The Precambrian is an informal unit of geologic time, subdivided into three eons of the geologic time scale, it spans from the formation of Earth about 4.6 billion years ago to the beginning of the Cambrian Period, about 541 million years ago, when hard-shelled creatures first appeared in abundance. Little is known about the Precambrian, despite it making up seven-eighths of the Earth's history, what is known has been discovered from the 1960s onwards; the Precambrian fossil record is poorer than that of the succeeding Phanerozoic, fossils from the Precambrian are of limited biostratigraphic use. This is because many Precambrian rocks have been metamorphosed, obscuring their origins, while others have been destroyed by erosion, or remain buried beneath Phanerozoic strata.
It is thought that the Earth coalesced from material in orbit around the Sun at 4,543 Ma, may have been struck by a large planetesimal shortly after it formed, splitting off material that formed the Moon. A stable crust was in place by 4,433 Ma, since zircon crystals from Western Australia have been dated at 4,404 ± 8 Ma; the term "Precambrian" is recognized by the International Commission on Stratigraphy as the only "supereon" in geologic time. "Precambrian" is still used by geologists and paleontologists for general discussions not requiring the more specific eon names. As of 2010, the United States Geological Survey considers the term informal, lacking a stratigraphic rank. A specific date for the origin of life has not been determined. Carbon found in 3.8 billion-year-old rocks from islands off western Greenland may be of organic origin. Well-preserved microscopic fossils of bacteria older than 3.46 billion years have been found in Western Australia. Probable fossils 100 million years older have been found in the same area.
However, there is evidence. There is a solid record of bacterial life throughout the remainder of the Precambrian. Excluding a few contested reports of much older forms from North America and India, the first complex multicellular life forms seem to have appeared at 1500 Ma, in the Mesoproterozoic era of the Proterozoic eon. Fossil evidence from the Ediacaran period of such complex life comes from the Lantian formation, at least 580 million years ago. A diverse collection of soft-bodied forms is found in a variety of locations worldwide and date to between 635 and 542 Ma; these are referred to as Vendian biota. Hard-shelled creatures appeared toward the end of that time span, marking the beginning of the Phanerozoic eon. By the middle of the following Cambrian period, a diverse fauna is recorded in the Burgess Shale, including some which may represent stem groups of modern taxa; the increase in diversity of lifeforms during the early Cambrian is called the Cambrian explosion of life. While land seems to have been devoid of plants and animals and other microbes formed prokaryotic mats that covered terrestrial areas.
Tracks from an animal with leg like appendages have been found in what was mud 551 million years ago. Evidence of the details of plate motions and other tectonic activity in the Precambrian has been poorly preserved, it is believed that small proto-continents existed prior to 4280 Ma, that most of the Earth's landmasses collected into a single supercontinent around 1130 Ma. The supercontinent, known as Rodinia, broke up around 750 Ma. A number of glacial periods have been identified going as far back as the Huronian epoch 2400–2100 Ma. One of the best studied is the Sturtian-Varangian glaciation, around 850–635 Ma, which may have brought glacial conditions all the way to the equator, resulting in a "Snowball Earth"; the atmosphere of the early Earth is not well understood. Most geologists believe it was composed of nitrogen, carbon dioxide, other inert gases, was lacking in free oxygen. There is, evidence that an oxygen-rich atmosphere existed since the early Archean. At present, it is still believed that molecular oxygen was not a significant fraction of Earth's atmosphere until after photosynthetic life forms evolved and began to produce it in large quantities as a byproduct of their metabolism.
This radical shift from a chemically inert to an oxidizing atmosphere caused an ecological crisis, sometimes called the oxygen catastrophe. At first, oxygen would have combined with other elements in Earth's crust iron, removing it from the atmosphere. After the supply of oxidizable surfaces ran out, oxygen would have begun to accumulate in the atmosphere, the modern high-oxygen atmosphere would have developed. Evidence for this lies in older rocks that contain massive banded iron formations that were laid down as iron oxides. A terminology has evolved covering the early years of the Earth's existence, as radiometric dating has allowed real dates to be assigned to specific formations and features; the Precambrian is divided into
Goniasteridae
Goniasteridae are the largest family of sea stars, included in the order Valvatida. Goniasteridae are middle-sized sea stars with a characteristic double range of marginal plates bordering the disk and arms. Most of them have five arms short and triangular, around a broad central disc; the aboral face is covered with tiny spines looking like paxillae. Pedicellariae are valvate, the gonads are located at the interradius. Main identification keys for this group include the presence of paxillae, teeth, spines, or the shape and dimensions of marginal plate, they occur predominantly on deep-water continental shelf habitats in all the world’s oceans, being the most diverse in the Indo-Pacific region. About 260 extant species within 70 genera are known, which make this family the most diverse of all the sea stars if half of the genera are monospecific. Species belonging to the Ferdininae subfamily have been imported from Ophidiasteridae thanks to a large revision of these two families in 2017According to World Register of Marine Species, this family includes the following genera: Lists of extinct genera according to fossilworks.
Bugarachaster Breton 1992 Buterminaster Blake and Zinsmeister 1988 Caletaster Breton 1978 Capellia Blake and Reid 1998 Cenomanaster Wright 1951 Chomataster Spencer 1913 Codellaster Blake and Kues 2002 Comptonia Gray 1840 Comptoniaster Breton 1983 Cottreauaster Wright 1951 Crateraster Spencer 1913 Cymbaster Breton and Néraudeau 2008 Fayoumaster Roman and Strougo 1987 Fomalhautia Blake and Reid 1998 Forbesiaster de Loriol 1909 Fredaster Breton and Néraudeau 2008 Galbaster Villier et al. 2004 Haccourtaster Jagt 2000 Hessaster Gale 2011 Huroeaster Valette 1915 Leptogonium Pomel 1885 Marocaster Blake and Reboul 2011 Mastaster Mercier 1935 Metopaster Sladen 1893 Miopentagonaster Mercier 1935 Nehalemia Blake 1973 Noviaster Valette 1929 Ocalaster Blake and Portell 2009 Ophryaster Spencer 1913 Oyenaster Blake and Portell 2009 Pachyaster de Loriol 1909 Parametopaster Breton 1992 Pentetagonaster d'Orbigny 1850 Pulcinellaster Breton 1992 Recurvaster Brünnich-Nielsen 1943 Skiaster Blake and Jagt 2005 Spenceraster Lambert 1914 Sucia Blake 1973 Talecaster Breton 1992 Teichaster Spencer 1913 Tomidaster Sladen 1891 Tylasteria Valette 1929
Starfish
Starfish or sea stars are star-shaped echinoderms belonging to the class Asteroidea. Common usage finds these names being applied to ophiuroids, which are referred to as brittle stars or basket stars. About 1,500 species of starfish occur on the seabed in all the world's oceans, from the tropics to frigid polar waters, they are found from the intertidal zone down to 6,000 m below the surface. Starfish are marine invertebrates, they have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, is covered with overlapping plates. Many species are brightly coloured in various shades of red or orange, while others are blue, grey or brown. Starfish have tube feet operated by a hydraulic system and a mouth at the centre of the oral or lower surface, they are opportunistic feeders and are predators on benthic invertebrates. Several species have specialized feeding behaviours including eversion of their stomachs and suspension feeding.
They can reproduce both sexually and asexually. Most can regenerate damaged parts or lost arms and they can shed arms as a means of defence; the Asteroidea occupy several significant ecological roles. Starfish, such as the ochre sea star and the reef sea star, have become known as examples of the keystone species concept in ecology; the tropical crown-of-thorns starfish is a voracious predator of coral throughout the Indo-Pacific region, the northern Pacific sea star is considered to be one of the world's 100 worst invasive species. The fossil record for starfish is ancient, dating back to the Ordovician around 450 million years ago, but it is rather sparse, as starfish tend to disintegrate after death. Only the ossicles and spines of the animal are to be preserved, making remains hard to locate. With their appealing symmetrical shape, starfish have played a part in literature, legend and popular culture, they are sometimes collected as curios, used in design or as logos, in some cultures, despite possible toxicity, they are eaten.
Most starfish have five arms that radiate from a central disc. Some species have six or seven arms and others have 10–15 arms; the Antarctic Labidiaster annulatus can have over fifty. Having descended from bilateral organisms, starfish move in a bilateral fashion, with certain arms acting like the front of the animal; the body wall consists of a thin cuticle, an epidermis consisting of a single layer of cells, a thick dermis formed of connective tissue and a thin coelomic myoepithelial layer, which provides the longitudinal and circular musculature. The dermis contains an endoskeleton of calcium carbonate components known as ossicles; these are honeycombed structures composed of calcite microcrystals arranged in a lattice. They vary in form, with some bearing external granules and spines, but most are tabular plates that fit neatly together in a tessellated manner and form the main covering of the aboral surface; some are specialised structures such as the madreporite and paxillae. Pedicellariae are compound ossicles with forceps-like jaws.
They remove debris from the body surface and wave around on flexible stalks in response to physical or chemical stimuli while continually making biting movements. They form clusters surrounding spines. Paxillae are umbrella-like structures found on starfish; the edges of adjacent paxillae meet to form a false cuticle with a water cavity beneath in which the madreporite and delicate gill structures are protected. All the ossicles, including those projecting externally, are covered by the epidermal layer. Several groups of starfish, including Valvatida and Forcipulatida, possess pedicellariae. In Forcipulatida, such as Asterias and Pisaster, they occur in pompom-like tufts at the base of each spine, whereas in the Goniasteridae, such as Hippasteria phrygiana, the pedicellariae are scattered over the body surface; some are thought to assist in defence, while others aid in feeding or in the removal of organisms attempting to settle on the starfish's surface. Some species like Labidiaster annulatus, Rathbunaster californicus and Novodinia antillensis use their large pedicellariae to capture small fish and crustaceans.
There may be papulae, thin-walled protrusions of the body cavity that reach through the body wall and extend into the surrounding water. These serve a respiratory function; the structures are supported by collagen fibres set at right angles to each other and arranged in a three-dimensional web with the ossicles and papulae in the interstices. This arrangement enables both easy flexion of the arms by the starfish and the rapid onset of stiffness and rigidity required for actions performed under stress; the water vascular system of the starfish is a hydraulic system made up of a network of fluid-filled canals and is concerned with locomotion, food manipulation and gas exchange. Water enters the system through the madreporite, a porous conspicuous, sieve-like ossicle on the aboral surface, it is linked through a stone canal lined with calcareous material, to a ring canal around the mouth opening. A set of radial canals leads off this. There are short lateral canals branching off alternately to either side of the radial canal, each ending in an ampulla.
These bulb-shaped organs are joined to tube feet on the exterior of the animal by short linking canals that pass through ossicles in the ambulacral groove. There are two rows of tube feet but in some species, the lateral c
Carboniferous
The Carboniferous is a geologic period and system that spans 60 million years from the end of the Devonian Period 358.9 million years ago, to the beginning of the Permian Period, 298.9 Mya. The name Carboniferous means "coal-bearing" and derives from the Latin words carbō and ferō, was coined by geologists William Conybeare and William Phillips in 1822. Based on a study of the British rock succession, it was the first of the modern'system' names to be employed, reflects the fact that many coal beds were formed globally during that time; the Carboniferous is treated in North America as two geological periods, the earlier Mississippian and the Pennsylvanian. Terrestrial animal life was well established by the Carboniferous period. Amphibians were the dominant land vertebrates, of which one branch would evolve into amniotes, the first terrestrial vertebrates. Arthropods were very common, many were much larger than those of today. Vast swaths of forest covered the land, which would be laid down and become the coal beds characteristic of the Carboniferous stratigraphy evident today.
The atmospheric content of oxygen reached its highest levels in geological history during the period, 35% compared with 21% today, allowing terrestrial invertebrates to evolve to great size. The half of the period experienced glaciations, low sea level, mountain building as the continents collided to form Pangaea. A minor marine and terrestrial extinction event, the Carboniferous rainforest collapse, occurred at the end of the period, caused by climate change. In the United States the Carboniferous is broken into Mississippian and Pennsylvanian subperiods; the Mississippian is about twice as long as the Pennsylvanian, but due to the large thickness of coal-bearing deposits with Pennsylvanian ages in Europe and North America, the two subperiods were long thought to have been more or less equal in duration. In Europe the Lower Carboniferous sub-system is known as the Dinantian, comprising the Tournaisian and Visean Series, dated at 362.5-332.9 Ma, the Upper Carboniferous sub-system is known as the Silesian, comprising the Namurian and Stephanian Series, dated at 332.9-298.9 Ma.
The Silesian is contemporaneous with the late Mississippian Serpukhovian plus the Pennsylvanian. In Britain the Dinantian is traditionally known as the Carboniferous Limestone, the Namurian as the Millstone Grit, the Westphalian as the Coal Measures and Pennant Sandstone; the International Commission on Stratigraphy faunal stages from youngest to oldest, together with some of their regional subdivisions, are: A global drop in sea level at the end of the Devonian reversed early in the Carboniferous. There was a drop in south polar temperatures; these conditions had little effect in the deep tropics, where lush swamps to become coal, flourished to within 30 degrees of the northernmost glaciers. Mid-Carboniferous, a drop in sea level precipitated a major marine extinction, one that hit crinoids and ammonites hard; this sea level drop and the associated unconformity in North America separate the Mississippian subperiod from the Pennsylvanian subperiod. This happened about 323 million years ago, at the onset of the Permo-Carboniferous Glaciation.
The Carboniferous was a time of active mountain-building as the supercontinent Pangaea came together. The southern continents remained tied together in the supercontinent Gondwana, which collided with North America–Europe along the present line of eastern North America; this continental collision resulted in the Hercynian orogeny in Europe, the Alleghenian orogeny in North America. In the same time frame, much of present eastern Eurasian plate welded itself to Europe along the line of the Ural Mountains. Most of the Mesozoic supercontinent of Pangea was now assembled, although North China, South China continents were still separated from Laurasia; the Late Carboniferous Pangaea was shaped like an "O." There were two major oceans in the Carboniferous—Panthalassa and Paleo-Tethys, inside the "O" in the Carboniferous Pangaea. Other minor oceans were shrinking and closed - Rheic Ocean, the small, shallow Ural Ocean and Proto-Tethys Ocean. Average global temperatures in the Early Carboniferous Period were high: 20 °C.
However, cooling during the Middle Carboniferous reduced average global temperatures to about 12 °C. Lack of growth rings of fossilized trees suggest a lack of seasons of a tropical climate. Glaciations in Gondwana, triggered by Gondwana's southward movement, continued into the Permian and because of the lack of clear markers and breaks, the deposits of this glacial period are referred to as Permo-Carboniferous in age; the cooling and drying of the climate led to the Carboniferous Rainforest Collapse during the late Carboniferous. Tropical rainforests fragmented and were devastated by climate change. Carboniferous rocks in Europe and eastern North America consist of a repeated sequence of limestone, sandstone and coal beds. In North America, the early Carboniferous is marine
Jurassic
The Jurassic period was a geologic period and system that spanned 56 million years from the end of the Triassic Period 201.3 million years ago to the beginning of the Cretaceous Period 145 Mya. The Jurassic constitutes the middle period of the Mesozoic Era known as the Age of Reptiles; the start of the period was marked by the major Triassic–Jurassic extinction event. Two other extinction events occurred during the period: the Pliensbachian-Toarcian extinction in the Early Jurassic, the Tithonian event at the end; the Jurassic period is divided into three epochs: Early and Late. In stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, Upper Jurassic series of rock formations; the Jurassic is named after the Jura Mountains within the European Alps, where limestone strata from the period were first identified. By the beginning of the Jurassic, the supercontinent Pangaea had begun rifting into two landmasses: Laurasia to the north, Gondwana to the south; this created more coastlines and shifted the continental climate from dry to humid, many of the arid deserts of the Triassic were replaced by lush rainforests.
On land, the fauna transitioned from the Triassic fauna, dominated by both dinosauromorph and crocodylomorph archosaurs, to one dominated by dinosaurs alone. The first birds appeared during the Jurassic, having evolved from a branch of theropod dinosaurs. Other major events include the appearance of the earliest lizards, the evolution of therian mammals, including primitive placentals. Crocodilians made the transition from a terrestrial to an aquatic mode of life; the oceans were inhabited by marine reptiles such as ichthyosaurs and plesiosaurs, while pterosaurs were the dominant flying vertebrates. The chronostratigraphic term "Jurassic" is directly linked to the Jura Mountains, a mountain range following the course of the France–Switzerland border. During a tour of the region in 1795, Alexander von Humboldt recognized the limestone dominated mountain range of the Jura Mountains as a separate formation that had not been included in the established stratigraphic system defined by Abraham Gottlob Werner, he named it "Jura-Kalkstein" in 1799.
The name "Jura" is derived from the Celtic root *jor via Gaulish *iuris "wooded mountain", borrowed into Latin as a place name, evolved into Juria and Jura. The Jurassic period is divided into three epochs: Early and Late. In stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, Upper Jurassic series of rock formations known as Lias and Malm in Europe; the separation of the term Jurassic into three sections originated with Leopold von Buch. The faunal stages from youngest to oldest are: During the early Jurassic period, the supercontinent Pangaea broke up into the northern supercontinent Laurasia and the southern supercontinent Gondwana; the Jurassic North Atlantic Ocean was narrow, while the South Atlantic did not open until the following Cretaceous period, when Gondwana itself rifted apart. The Tethys Sea closed, the Neotethys basin appeared. Climates were warm, with no evidence of a glacier having appeared; as in the Triassic, there was no land over either pole, no extensive ice caps existed.
The Jurassic geological record is good in western Europe, where extensive marine sequences indicate a time when much of that future landmass was submerged under shallow tropical seas. In contrast, the North American Jurassic record is the poorest of the Mesozoic, with few outcrops at the surface. Though the epicontinental Sundance Sea left marine deposits in parts of the northern plains of the United States and Canada during the late Jurassic, most exposed sediments from this period are continental, such as the alluvial deposits of the Morrison Formation; the Jurassic was a time of calcite sea geochemistry in which low-magnesium calcite was the primary inorganic marine precipitate of calcium carbonate. Carbonate hardgrounds were thus common, along with calcitic ooids, calcitic cements, invertebrate faunas with dominantly calcitic skeletons; the first of several massive batholiths were emplaced in the northern American cordillera beginning in the mid-Jurassic, marking the Nevadan orogeny. Important Jurassic exposures are found in Russia, South America, Japan and the United Kingdom.
In Africa, Early Jurassic strata are distributed in a similar fashion to Late Triassic beds, with more common outcrops in the south and less common fossil beds which are predominated by tracks to the north. As the Jurassic proceeded and more iconic groups of dinosaurs like sauropods and ornithopods proliferated in Africa. Middle Jurassic strata are neither well studied in Africa. Late Jurassic strata are poorly represented apart from the spectacular Tendaguru fauna in Tanzania; the Late Jurassic life of Tendaguru is similar to that found in western North America's Morrison Formation. During the Jurassic period, the primary vertebrates living in the sea were marine reptiles; the latter include ichthyosaurs, which were at the peak of their diversity, plesiosaurs and marine crocodiles of the families Teleosauridae and Metriorhynchidae. Numerous turtles could be found in rivers. In the invertebrate world, several new groups appeared, including rudists (a reef-formi
Echinoderm
Echinoderm is the common name given to any member of the phylum Echinodermata of marine animals. The adults are recognizable by their radial symmetry, include such well-known animals as sea stars, sea urchins, sand dollars, sea cucumbers, as well as the sea lilies or "stone lilies". Echinoderms are found from the intertidal zone to the abyssal zone; the phylum contains about 7000 living species, making it the second-largest grouping of deuterostomes, after the chordates. Echinoderms are the largest phylum that has no freshwater or terrestrial representatives. Aside from the hard-to-classify Arkarua, the first definitive members of the phylum appeared near the start of the Cambrian. One group of Cambrian echinoderms, the cinctans, which are close to the base of the echinoderm origin, have been found to possess external gills used for filter feeding, similar to those possessed by chordates and hemichordates; the echinoderms are important both geologically. Ecologically, there are few other groupings so abundant in the biotic desert of the deep sea, as well as shallower oceans.
Most echinoderms are able to reproduce asexually and regenerate tissue and limbs. Geologically, the value of echinoderms is in their ossified skeletons, which are major contributors to many limestone formations, can provide valuable clues as to the geological environment, they were the most used species in regenerative research in the 20th centuries. Further, it is held by some scientists that the radiation of echinoderms was responsible for the Mesozoic Marine Revolution. Along with the chordates and hemichordates, echinoderms are deuterostomes, one of the two major divisions of the bilaterians, the other being the protostomes. During the early development of the embryo, in deuterostomes, the blastopore becomes the anus whereas in the protostomes, it becomes the mouth. In deuterostomes, the mouth develops at a stage, at the opposite end of the blastula from the blastopore, a gut forms connecting the two; the larvae of echinoderms have bilateral symmetry but this is lost during metamorphosis when their bodies are reorganised and develop the characteristic radial symmetry of the echinoderm pentamerism.
The characteristics of adult echinoderms are the possession of a water vascular system with external tube feet and a calcareous endoskeleton consisting of ossicles connected by a mesh of collagen fibres. A 2014 analysis of 219 genes from all classes of echinoderms gives the following phylogenetic tree. There are a total of about 7,000 extant species of echinoderm as well as about 13,000 extinct species, they are found in habitats ranging from shallow intertidal areas to abyssal depths. Two main subdivisions are traditionally recognised: the more familiar motile Eleutherozoa, which encompasses the Asteroidea, Ophiuroidea and Holothuroidea; these consist of the extinct blastoids and Paracrinoids. A fifth class of Eleutherozoa consisting of just three species, the Concentricycloidea, were merged into the Asteroidea; the fossil record includes a large number of other classes which do not appear to fall into any extant crown group. All echinoderms are marine and nearly all are benthic; the oldest known echinoderm fossil may be Arkarua from the Precambrian of Australia.
It is a disc-like fossil with radial ridges on the rim and a five-pointed central depression marked with radial lines. However, no stereom or internal structure showing a water vascular system is present and the identification is inconclusive; the first universally accepted echinoderms appear in the Lower Cambrian period, asterozoans appeared in the Ordovician and the crinoids were a dominant group in the Paleozoic. Echinoderms left behind an extensive fossil record, it is hypothesised that the ancestor of all echinoderms was a simple, bilaterally symmetrical animal with a mouth and anus. This ancestral stock adopted an attached mode of life and suspension feeding, developed radial symmetry as this was more advantageous for such an existence; the larvae of all echinoderms are now bilaterally symmetrical and all develop radial symmetry at metamorphosis. The starfish and crinoids still attach themselves to the seabed while changing to their adult form; the first echinoderms gave rise to free-moving groups.
The evolution of endoskeletal plates with stereom structure and of external ciliary grooves for feeding were early echinoderm developments. The Paleozoic echinoderms were globular, attached to the substrate and were orientated with their oral surfaces upwards; the fossil echinoderms had ambulacral grooves extending down the side of the body, fringed on either side by brachioles, structures similar to the pinnules of a modern crinoid. It seems probable that the mouth-upward orientation is the primitive state and that at some stage, all the classes of echinoderms except the crinoids reversed this to become mouth-downward. Before this happened, the podia had a feeding function as they do in the crinoids today, their locomotor function came after the re-orientation of the mouth when the podia were in contact with the substrate for the firs
Neogene
The Neogene is a geologic period and system that spans 20.45 million years from the end of the Paleogene Period 23.03 million years ago to the beginning of the present Quaternary Period 2.58 Mya. The Neogene is sub-divided into two epochs, the earlier Miocene and the Pliocene; some geologists assert that the Neogene cannot be delineated from the modern geological period, the Quaternary. The term "Neogene" was coined in 1853 by the Austrian palaeontologist Moritz Hörnes. During this period and birds continued to evolve into modern forms, while other groups of life remained unchanged. Early hominids, the ancestors of humans, appeared in Africa near the end of the period; some continental movement took place, the most significant event being the connection of North and South America at the Isthmus of Panama, late in the Pliocene. This cut off the warm ocean currents from the Pacific to the Atlantic Ocean, leaving only the Gulf Stream to transfer heat to the Arctic Ocean; the global climate cooled over the course of the Neogene, culminating in a series of continental glaciations in the Quaternary Period that follows.
In ICS terminology, from upper to lower: The Pliocene Epoch is subdivided into 2 ages: Piacenzian Age, preceded by Zanclean AgeThe Miocene Epoch is subdivided into 6 ages: Messinian Age, preceded by Tortonian Age Serravallian Age Langhian Age Burdigalian Age Aquitanian AgeIn different geophysical regions of the world, other regional names are used for the same or overlapping ages and other timeline subdivisions. The terms Neogene System and upper Tertiary System describe the rocks deposited during the Neogene Period; the continents in the Neogene were close to their current positions. The Isthmus of Panama formed, connecting South America; the Indian subcontinent continued forming the Himalayas. Sea levels fell, creating land bridges between Africa and Eurasia and between Eurasia and North America; the global climate became seasonal and continued an overall drying and cooling trend which began at the start of the Paleogene. The ice caps on both poles began to grow and thicken, by the end of the period the first of a series of glaciations of the current Ice Age began.
Marine and continental flora and fauna have a modern appearance. The reptile group Choristodera became extinct in the early part of the period, while the amphibians known as Allocaudata disappeared at the end. Mammals and birds continued to be the dominant terrestrial vertebrates, took many forms as they adapted to various habitats; the first hominins, the ancestors of humans, may have appeared in southern Europe and migrated into Africa. In response to the cooler, seasonal climate, tropical plant species gave way to deciduous ones and grasslands replaced many forests. Grasses therefore diversified, herbivorous mammals evolved alongside it, creating the many grazing animals of today such as horses and bison. Eucalyptus fossil leaves occur in the Miocene of New Zealand, where the genus is not native today, but have been introduced from Australia; the Neogene traditionally ended at the end of the Pliocene Epoch, just before the older definition of the beginning of the Quaternary Period. However, there was a movement amongst geologists to include ongoing geological time in the Neogene, while others insist the Quaternary to be a separate period of distinctly different record.
The somewhat confusing terminology and disagreement amongst geologists on where to draw what hierarchical boundaries is due to the comparatively fine divisibility of time units as time approaches the present, due to geological preservation that causes the youngest sedimentary geological record to be preserved over a much larger area and to reflect many more environments than the older geological record. By dividing the Cenozoic Era into three periods instead of seven epochs, the periods are more comparable to the duration of periods in the Mesozoic and Paleozoic eras; the International Commission on Stratigraphy once proposed that the Quaternary be considered a sub-era of the Neogene, with a beginning date of 2.58 Ma, namely the start of the Gelasian Stage. In the 2004 proposal of the ICS, the Neogene would have consisted of the Miocene and Pliocene epochs; the International Union for Quaternary Research counterproposed that the Neogene and the Pliocene end at 2.58 Ma, that the Gelasian be transferred to the Pleistocene, the Quaternary be recognized as the third period in the Cenozoic, citing key changes in Earth's climate and biota that occurred 2.58 Ma and its correspondence to the Gauss-Matuyama magnetostratigraphic boundary.
In 2006 ICS and INQUA reached a compromise that made Quaternary a subera, subdividing Cenozoic into the old classical Tertiary and Quaternary, a compromise, rejected by International Union of Geological Sciences because it split both Neogene and Pliocene in two. Following formal discussions at the 2008 International Geological Congress in Oslo, the ICS decided in May 2009 to make the Quaternary the youngest period of the Cenozoic Era with its base at 2.58 Mya and including the Gelasian age, considered part of the Neogene Period and Pliocene Epoch. Thus the Neogene Period ends bounding the succeeding Quaternary Period at 2.58 Mya. "Digital Atlas of Neogene Life for the Southeastern United States". San Jose State University. Archived from the original on 2013-04-23. Retrieved 21 September 2018