1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Banach space
–
In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn, Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces, the vector space structure allows one to relate the behavior of Cauchy sequences to that of converging series of vectors. All norms on a vector space are equivalent. Every finite-dimensional normed space over R or C is a Banach space, if X and Y are normed spaces over the same ground field K, the set of all continuous K-linear maps T, X → Y is denoted by B. In infinite-dimensional spaces, not all maps are continuous. For Y a Banach space, the space B is a Banach space with respect to this norm, if X is a Banach space, the space B = B forms a unital Banach algebra, the multiplication operation is given by the composition of linear maps. If X and Y are normed spaces, they are isomorphic normed spaces if there exists a linear bijection T, X → Y such that T, if one of the two spaces X or Y is complete then so is the other space. Two normed spaces X and Y are isometrically isomorphic if in addition, T is an isometry, the Banach–Mazur distance d between two isomorphic but not isometric spaces X and Y gives a measure of how much the two spaces X and Y differ. Every normed space X can be embedded in a Banach space. More precisely, there is a Banach space Y and an isometric mapping T, X → Y such that T is dense in Y. If Z is another Banach space such that there is an isomorphism from X onto a dense subset of Z. This Banach space Y is the completion of the normed space X, the underlying metric space for Y is the same as the metric completion of X, with the vector space operations extended from X to Y. The completion of X is often denoted by X ^, the cartesian product X × Y of two normed spaces is not canonically equipped with a norm. However, several equivalent norms are used, such as ∥ ∥1 = ∥ x ∥ + ∥ y ∥, ∥ ∥ ∞ = max. In this sense, the product X × Y is complete if and only if the two factors are complete. If M is a linear subspace of a normed space X, there is a natural norm on the quotient space X / M

3.
Convex combination
–
In convex geometry, a convex combination is a linear combination of points where all coefficients are non-negative and sum to 1. As a particular example, every combination of two points lies on the line segment between the points. The convex hull of the points is identical to the set of all their convex combinations. There exist subsets of a space that are not closed under linear combinations but are closed under convex combinations. For example, the interval is convex but generates the real-number line under linear combinations, another example is the convex set of probability distributions, as linear combinations preserve neither nonnegativity nor affinity. Weighted means are functionally the same as convex combinations, but they use a different notation, the coefficients in a weighted mean are not required to sum to 1, instead the sum is explicitly divided from the linear combination. Affine combinations are like convex combinations, but the coefficients are not required to be non-negative, hence affine combinations are defined in vector spaces over any field. Affine hull Carathéodorys theorem Convex hull Simplex Barycentric coordinate system

4.
Linear form
–
In linear algebra, a linear functional or linear form is a linear map from a vector space to its field of scalars. The set of all linear functionals from V to k, Homk, forms a space over k with the addition of the operations of addition. This space is called the space of V, or sometimes the algebraic dual space. It is often written V∗ or V′ when the field k is understood, if V is a topological vector space, the space of continuous linear functionals — the continuous dual — is often simply called the dual space. If V is a Banach space, then so is its dual, to distinguish the ordinary dual space from the continuous dual space, the former is sometimes called the algebraic dual. In finite dimensions, every linear functional is continuous, so the dual is the same as the algebraic dual. Suppose that vectors in the coordinate space Rn are represented as column vectors x → =. For each row there is a linear functional f defined by f = a 1 x 1 + ⋯ + a n x n. This is just the product of the row vector and the column vector x →, f =. Linear functionals first appeared in functional analysis, the study of spaces of functions. Let Pn denote the space of real-valued polynomial functions of degree ≤n defined on an interval. If c ∈, then let evc, Pn → R be the evaluation functional, the mapping f → f is linear since = f + g = α f. If x0, …, xn are n+1 distinct points in, then the evaluation functionals evxi, the integration functional I defined above defines a linear functional on the subspace Pn of polynomials of degree ≤ n. If x0, …, xn are n+1 distinct points in, then there are coefficients a0, … and this forms the foundation of the theory of numerical quadrature. This follows from the fact that the linear functionals evxi, f → f defined above form a basis of the space of Pn. Linear functionals are particularly important in quantum mechanics, quantum mechanical systems are represented by Hilbert spaces, which are anti–isomorphic to their own dual spaces. A state of a mechanical system can be identified with a linear functional. For more information see bra–ket notation, in the theory of generalized functions, certain kinds of generalized functions called distributions can be realized as linear functionals on spaces of test functions

5.
Dual space
–
In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V together with a naturally induced linear structure. The dual space as defined above is defined for all vector spaces, when defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space. Dual vector spaces find application in many branches of mathematics that use vector spaces, when applied to vector spaces of functions, dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the space is an important concept in functional analysis. Given any vector space V over a field F, the dual space V∗ is defined as the set of all linear maps φ, V → F, since linear maps are vector space homomorphisms, the dual space is also sometimes denoted by Hom. The dual space V∗ itself becomes a space over F when equipped with an addition and scalar multiplication satisfying, = φ + ψ = a for all φ and ψ ∈ V∗, x ∈ V. Elements of the dual space V∗ are sometimes called covectors or one-forms. The pairing of a functional φ in the dual space V∗ and this pairing defines a nondegenerate bilinear mapping ⟨·, ·⟩, V∗ × V → F called the natural pairing. If V is finite-dimensional, then V∗ has the dimension as V. Given a basis in V, it is possible to construct a basis in V∗. This dual basis is a set of linear functionals on V, defined by the relation e i = c i, i =1, …, n for any choice of coefficients ci ∈ F. In particular, letting in turn one of those coefficients be equal to one. For example, if V is R2, and its basis chosen to be, then e1 and e2 are one-forms such that e1 =1, e1 =0, e2 =0, and e2 =1. In particular, if we interpret Rn as the space of columns of n real numbers, such a row acts on Rn as a linear functional by ordinary matrix multiplication. One way to see this is that a functional maps every n-vector x into a number y. So an element of V∗ can be thought of as a particular family of parallel lines covering the plane. To compute the value of a functional on a given vector, or, informally, one counts how many lines the vector crosses. The dimension of R∞ is countably infinite, whereas RN does not have a countable basis, again the sum is finite because fα is nonzero for only finitely many α

6.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker

7.
Topological vector space
–
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. As the name suggests the space blends a topological structure with the concept of a vector space. Hilbert spaces and Banach spaces are well-known examples, unless stated otherwise, the underlying field of a topological vector space is assumed to be either the complex numbers C or the real numbers R. Some authors require the topology on X to be T1, it follows that the space is Hausdorff. The topological and linear algebraic structures can be tied together even more closely with additional assumptions, the category of topological vector spaces over a given topological field K is commonly denoted TVSK or TVectK. The objects are the vector spaces over K and the morphisms are the continuous K-linear maps from one object to another. Every normed vector space has a topological structure, the norm induces a metric. This is a vector space because, The vector addition +, V × V → V is jointly continuous with respect to this topology. This follows directly from the triangle inequality obeyed by the norm, the scalar multiplication ·, K × V → V, where K is the underlying scalar field of V, is jointly continuous. This follows from the inequality and homogeneity of the norm. Therefore, all Banach spaces and Hilbert spaces are examples of vector spaces. There are topological spaces whose topology is not induced by a norm. These are all examples of Montel spaces, an infinite-dimensional Montel space is never normable. A topological field is a vector space over each of its subfields. A cartesian product of a family of vector spaces, when endowed with the product topology, is a topological vector space. For instance, the set X of all functions f, R → R, with this topology, X becomes a topological vector space, called the space of pointwise convergence. The reason for this name is the following, if is a sequence of elements in X, then fn has limit f in X if and only if fn has limit f for every real number x. This space is complete, but not normable, indeed, every neighborhood of 0 in the topology contains lines