Acid dissociation constant
An acid dissociation constant, Ka, is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction known as dissociation in the context of acid–base reactions. K a =; the chemical species HA, A−, H+ are said to be in equilibrium when their concentrations do not change with the passing of time, because both forward and backward reactions are occurring at the same fast rate. The chemical equation for acid dissociation can be written symbolically as: HA ↽ − − ⇀ A − + H + where HA is a generic acid that dissociates into A−, the conjugate base of the acid and a hydrogen ion, H+, it is implicit in this definition that the quotient of activity coefficients, Γ, Γ = γ A − γ H + γ A H is a constant that can be ignored in a given set of experimental conditions. For many practical purposes it is more convenient to discuss the logarithmic constant, pKa p K a = − log 10 The more positive the value of pKa, the smaller the extent of dissociation at any given pH —that is, the weaker the acid.
A weak acid has a pKa value in the approximate range −2 to 12 in water. For a buffer solution consisting of a weak acid and its conjugate base, pKa can be expressed as: p K a = pH − log 10 The pKa for a weak monoprotic acid is conveniently determined by potentiometric titration with a strong base to the equivalence point and taking the pH value measured at one-half this volume as being equal to pKa; that is because at this half equivalence point, the number of moles of strong base added is one-half the number of moles of weak acid present, while the concentrations of the conjugate base and the remaining weak acid are the same. Acids with a pKa value of less than about −2 are said to be strong acids. In water, the dissociation of a strong acid in dilute solutions is complete such that the final concentration of the undissociated acid final is low. Consider a strong monoprotic acid, such as HCl; because of their 1:1 ratio, the final concentration of the conjugate base, final, is taken to be equal to the concentration of the hydronium ion, which can be directly measured by a pH meter.
For strong monoprotic acids like HCl, final and are both nearly equal to the initial concentration of initial placed into solution. With conventional acid-base titration methods it is difficult to measure the pH of a strong acid solution and, hence, to determine the or final, with a sufficient number of significant figures to and compute the low values encountered for final, which can be as low as 10-9 mol per liter for some strong acids. Furthermore, if 100% dissociation is assumed, final is zero and the fraction within parenthesis in the equation above becomes undefined; because the second expression on the right-hand side of the above equation is therefore indeterminable by conventional titration methods, the entire equation is not as useful a means of experimentally measuring pKa for strong acids as it is for weak acids. However, pKa and/or Ka values for strong acids can be estimated by theoretical means, such as computing gas phase dissociation constants and using Gibbs free energies of solvation for the molecular anions.
It is possible to use spectroscopy in some cases to determine the ratio of the concentrations of the conjugate base produced and the undissociated acid. For example, the Raman spectra of dilute nitric acid solutions contain signals of the nitrate ion and as the solutions become more concentrated signals of undissociated nitric acid molecules emerge; the acid dissociation constant for an acid is a direct consequence of the underlying thermodynamics of the dissociation reaction. The value of the pKa changes with temperature and can be understood qualitatively based on Le Châtelier's principle: when the reaction is endothermic, Ka increases and pKa decreases with
Safety data sheet
A safety data sheet, material safety data sheet, or product safety data sheet is a document that lists information relating to occupational safety and health for the use of various substances and products. SDSs are a used system for cataloging information on chemicals, chemical compounds, chemical mixtures. SDS information may include instructions for the safe use and potential hazards associated with a particular material or product, along with spill-handling procedures. SDS formats can vary from source to source within a country depending on national requirements. A SDS for a substance is not intended for use by the general consumer, focusing instead on the hazards of working with the material in an occupational setting. There is a duty to properly label substances on the basis of physico-chemical, health or environmental risk. Labels can include hazard symbols such as the European Union standard symbols; the same product can have different formulations in different countries. The formulation and hazard of a product using a generic name may vary between manufacturers in the same country.
The Globally Harmonized System of Classification and Labelling of Chemicals contains a standard specification for safety data sheets. The SDS follows a 16 section format, internationally agreed and for substances the SDS should be followed with an Annex which contains the exposure scenarios of this particular substance; the 16 sections are: SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.3. Details of the supplier of the safety data sheet 1.4. Emergency telephone number SECTION 2: Hazards identification 2.1. Classification of the substance or mixture 2.2. Label elements 2.3. Other hazards SECTION 3: Composition/information on ingredients 3.1. Substances 3.2. Mixtures SECTION 4: First aid measures 4.1. Description of first aid measures 4.2. Most important symptoms and effects, both acute and delayed 4.3. Indication of any immediate medical attention and special treatment needed SECTION 5: Firefighting measures 5.1.
Extinguishing media 5.2. Special hazards arising from the substance or mixture 5.3. Advice for firefighters SECTION 6: Accidental release measure 6.1. Personal precautions, protective equipment and emergency procedures 6.2. Environmental precautions 6.3. Methods and material for containment and cleaning up 6.4. Reference to other sections SECTION 7: Handling and storage 7.1. Precautions for safe handling 7.2. Conditions for safe storage, including any incompatibilities 7.3. Specific end use SECTION 8: Exposure controls/personal protection 8.1. Control parameters 8.2. Exposure controls SECTION 9: Physical and chemical properties 9.1. Information on basic physical and chemical properties 9.2. Other information SECTION 10: Stability and reactivity 10.1. Reactivity 10.2. Chemical stability 10.3. Possibility of hazardous reactions 10.4. Conditions to avoid 10.5. Incompatible materials 10.6. Hazardous decomposition products SECTION 11: Toxicological information 11.1. Information on toxicological effects SECTION 12: Ecological information 12.1.
Toxicity 12.2. Persistence and degradability 12.3. Bioaccumulative potential 12.4. Mobility in soil 12.5. Results of PBT and vPvB assessment 12.6. Other adverse effects SECTION 13: Disposal considerations 13.1. Waste treatment methods SECTION 14: Transport information 14.1. UN number 14.2. UN proper shipping name 14.3. Transport hazard class 14.4. Packing group 14.5. Environmental hazards 14.6. Special precautions for user 14.7. Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code SECTION 15: Regulatory information 15.1. Safety and environmental regulations/legislation specific for the substance or mixture 15.2. Chemical safety assessment SECTION 16: Other information 16.2. Date of the latest revision of the SDS In Canada, the program known as the Workplace Hazardous Materials Information System establishes the requirements for SDSs in workplaces and is administered federally by Health Canada under the Hazardous Products Act, Part II, the Controlled Products Regulations. Safety data sheets have been made an integral part of the system of Regulation No 1907/2006.
The original requirements of REACH for SDSs have been further adapted to take into account the rules for safety data sheets of the Global Harmonised System and the implementation of other elements of the GHS into EU legislation that were introduced by Regulation No 1272/2008 via an update to Annex II of REACH. The SDS must be supplied in an official language of the Member State where the substance or mixture is placed on the market, unless the Member State concerned provide otherwise; the European Chemicals Agency has published a guidance document on the compilation of safety data sheets. The German Federal Water Management Act requires that substances be evaluated for negative influence on the physical, chemical or biological characteristics of water; these are classified into numeric water hazard classes. WGK nwg: Non-water polluting substance WGK 1: Slightly water polluting substance WGK 2: Water polluting substance WGK 3: Highly water polluting substance This section contributes to a better understanding of the regulations governing SDS within the South African framework.
As regulations may change, it is the responsibility of the reader to verify the validity of the regulations mentioned in text. As globalisation increased and countries engaged in cross-border trade, the quantity of hazardous material crossing international borders a
Melting point
The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium; the melting point of a substance depends on pressure and is specified at a standard pressure such as 1 atmosphere or 100 kPa. When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point; because of the ability of some substances to supercool, the freezing point is not considered as a characteristic property of a substance. When the "characteristic freezing point" of a substance is determined, in fact the actual methodology is always "the principle of observing the disappearance rather than the formation of ice", that is, the melting point. For most substances and freezing points are equal. For example, the melting point and freezing point of mercury is 234.32 kelvins. However, certain substances possess differing solid-liquid transition temperatures.
For example, agar melts at 85 °C and solidifies from 31 °C. The melting point of ice at 1 atmosphere of pressure is close to 0 °C. In the presence of nucleating substances, the freezing point of water is not always the same as the melting point. In the absence of nucleators water can exist as a supercooled liquid down to −48.3 °C before freezing. The chemical element with the highest melting point is tungsten, at 3,414 °C; the often-cited carbon does not melt at ambient pressure but sublimes at about 3,726.85 °C. Tantalum hafnium carbide is a refractory compound with a high melting point of 4215 K. At the other end of the scale, helium does not freeze at all at normal pressure at temperatures arbitrarily close to absolute zero. Many laboratory techniques exist for the determination of melting points. A Kofler bench is a metal strip with a temperature gradient. Any substance can be placed on a section of the strip, revealing its thermal behaviour at the temperature at that point. Differential scanning calorimetry gives information on melting point together with its enthalpy of fusion.
A basic melting point apparatus for the analysis of crystalline solids consists of an oil bath with a transparent window and a simple magnifier. The several grains of a solid are placed in a thin glass tube and immersed in the oil bath; the oil bath is heated and with the aid of the magnifier melting of the individual crystals at a certain temperature can be observed. In large/small devices, the sample is placed in a heating block, optical detection is automated; the measurement can be made continuously with an operating process. For instance, oil refineries measure the freeze point of diesel fuel online, meaning that the sample is taken from the process and measured automatically; this allows for more frequent measurements as the sample does not have to be manually collected and taken to a remote laboratory. For refractory materials the high melting point may be determined by heating the material in a black body furnace and measuring the black-body temperature with an optical pyrometer. For the highest melting materials, this may require extrapolation by several hundred degrees.
The spectral radiance from an incandescent body is known to be a function of its temperature. An optical pyrometer matches the radiance of a body under study to the radiance of a source, calibrated as a function of temperature. In this way, the measurement of the absolute magnitude of the intensity of radiation is unnecessary. However, known temperatures must be used to determine the calibration of the pyrometer. For temperatures above the calibration range of the source, an extrapolation technique must be employed; this extrapolation is accomplished by using Planck's law of radiation. The constants in this equation are not known with sufficient accuracy, causing errors in the extrapolation to become larger at higher temperatures. However, standard techniques have been developed to perform this extrapolation. Consider the case of using gold as the source. In this technique, the current through the filament of the pyrometer is adjusted until the light intensity of the filament matches that of a black-body at the melting point of gold.
This establishes the primary calibration temperature and can be expressed in terms of current through the pyrometer lamp. With the same current setting, the pyrometer is sighted on another black-body at a higher temperature. An absorbing medium of known transmission is inserted between this black-body; the temperature of the black-body is adjusted until a match exists between its intensity and that of the pyrometer filament. The true higher temperature of the black-body is determined from Planck's Law; the absorbing medium is removed and the current through the filament is adjusted to match the filament intensity to that of the black-body. This establishes a second calibration point for the pyrometer; this step is repeated to carry the calibration to hi
Density
The density, or more the volumetric mass density, of a substance is its mass per unit volume. The symbol most used for density is ρ, although the Latin letter D can be used. Mathematically, density is defined as mass divided by volume: ρ = m V where ρ is the density, m is the mass, V is the volume. In some cases, density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials have different densities, density may be relevant to buoyancy and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative density" or "specific gravity", i.e. the ratio of the density of the material to that of a standard material water.
Thus a relative density less than one means. The density of a material varies with pressure; this variation is small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object and thus increases its density. Increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a fluid results in convection of the heat from the bottom to the top, due to the decrease in the density of the heated fluid; this causes it to rise relative to more dense unheated material. The reciprocal of the density of a substance is called its specific volume, a term sometimes used in thermodynamics. Density is an intensive property in that increasing the amount of a substance does not increase its density. In a well-known but apocryphal tale, Archimedes was given the task of determining whether King Hiero's goldsmith was embezzling gold during the manufacture of a golden wreath dedicated to the gods and replacing it with another, cheaper alloy.
Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated and compared with the mass. Baffled, Archimedes is said to have taken an immersion bath and observed from the rise of the water upon entering that he could calculate the volume of the gold wreath through the displacement of the water. Upon this discovery, he leapt from his bath and ran naked through the streets shouting, "Eureka! Eureka!". As a result, the term "eureka" entered common parlance and is used today to indicate a moment of enlightenment; the story first appeared in written form in Vitruvius' books of architecture, two centuries after it took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time. From the equation for density, mass density has units of mass divided by volume; as there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use.
The SI unit of kilogram per cubic metre and the cgs unit of gram per cubic centimetre are the most used units for density. One g/cm3 is equal to one thousand kg/m3. One cubic centimetre is equal to one millilitre. In industry, other larger or smaller units of mass and or volume are more practical and US customary units may be used. See below for a list of some of the most common units of density. A number of techniques as well as standards exist for the measurement of density of materials; such techniques include the use of a hydrometer, Hydrostatic balance, immersed body method, air comparison pycnometer, oscillating densitometer, as well as pour and tap. However, each individual method or technique measures different types of density, therefore it is necessary to have an understanding of the type of density being measured as well as the type of material in question; the density at all points of a homogeneous object equals its total mass divided by its total volume. The mass is measured with a scale or balance.
To determine the density of a liquid or a gas, a hydrometer, a dasymeter or a Coriolis flow meter may be used, respectively. Hydrostatic weighing uses the displacement of water due to a submerged object to determine the density of the object. If the body is not homogeneous its density varies between different regions of the object. In that case the density around any given location is determined by calculating the density of a small volume around that location. In the limit of an infinitesimal volume the density of an inhomogeneous object at a point becomes: ρ = d m / d V, where d V is an elementary volume at position r; the mass of the body t
Immediately dangerous to life or health
The term dangerous to life or health is defined by the US National Institute for Occupational Safety and Health as exposure to airborne contaminants, "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." Examples include smoke or other poisonous gases at sufficiently high concentrations. It is calculated using the LD50 or LC50; the Occupational Safety and Health Administration regulation defines the term as "an atmosphere that poses an immediate threat to life, would cause irreversible adverse health effects, or would impair an individual's ability to escape from a dangerous atmosphere."IDLH values are used to guide the selection of breathing apparatus that are made available to workers or firefighters in specific situations. The NIOSH definition does not include oxygen deficiency although atmosphere-supplying breathing apparatus is required. Examples unventilated, confined spaces; the OSHA definition is arguably broad enough to include oxygen-deficient circumstances in the absence of "airborne contaminants", as well as many other chemical, thermal, or pneumatic hazards to life or health.
It uses the broader term "impair", rather than "prevent", with respect to the ability to escape. For example, blinding but non-toxic smoke could be considered IDLH under the OSHA definition if it would impair the ability to escape a "dangerous" but not life-threatening atmosphere; the OSHA definition is part of a legal standard, the minimum legal requirement. Users or employers are encouraged to apply proper judgment to avoid taking unnecessary risks if the only immediate hazard is "reversible", such as temporary pain, nausea, or non-toxic contamination. If the concentration of harmful substances is IDLH, the worker must use the most reliable respirators; such respirators should not use cartridges or canister with the sorbent, as their lifetime is too poorly predicted. In addition, the respirator must maintain positive pressure under the mask during inspiration, as this will prevent the leakage of unfiltered air through the gaps. Textbook NIOSH recommended for use in IDLH conditions only pressure-demand self-contained breathing apparatus with a full facepiece, or pressure-demand supplied-air respirator equipped with a full facepiece in combination with an auxiliary pressure-demand self-contained breathing apparatus.
The following examples are listed in reference to IDLH values. Legend: Ca NIOSH considers this substance to be a potential occupational carcinogen. Revised values may follow in parentheses. N. D. Not determined; that is, the level is unknown, not non-existent. 10%LEL The IDLM value has been set at 10% of the lower explosive limit although other irreversible health effects or impairment of escape due to toxicology exist only at higher levels. NIOSH air filtration rating NIOSH IDLH site 1910.134 Respiratory protection definitions
Odor
An odor, or odour, is caused by one or more volatilized chemical compounds that are found in low concentrations that humans and animals can perceive by their sense of smell. An odor is called a "smell" or a "scent", which can refer to either a pleasant or an unpleasant odor. While "scent" can refer to pleasant and unpleasant odors, the terms "scent", "aroma", "fragrance" are reserved for pleasant-smelling odors and are used in the food and cosmetic industry to describe floral scents or to refer to perfumes. In the United Kingdom, "odour" refers to scents in general. An unpleasant odor can be described as "reeking" or called a "malodor", "stench", "pong", or "stink"; the perception of odors, or sense of smell, is mediated by the olfactory nerve. The olfactory receptor cells are neurons present in the olfactory epithelium, a small patch of tissue at the back of the nasal cavity. There are millions of olfactory receptor neurons; each neuron has cilia in direct contact with the air. Odorous molecules bind to receptor proteins extending from cilia and act as a chemical stimulus, initiating electric signals that travel along the olfactory nerve's axons to the brain.
When an electrical signal reaches a threshold, the neuron fires, which sends a signal traveling along the axon to the olfactory bulb, a part of the limbic system of the brain. Interpretation of the smell begins there, relating the smell to past experiences and in relation to the substance inhaled; the olfactory bulb acts as a relay station connecting the nose to the olfactory cortex in the brain. Olfactory information is further processed and forwarded to the central nervous system, which controls emotions and behavior as well as basic thought processes. Odor sensation depends on the concentration available to the olfactory receptors. A single odorant is recognized by many receptors. Different odorants are recognized by combinations of receptors; the patterns of neuron signals help to identify the smell. The olfactory system does not interpret a single compound, but instead the whole odorous mix; this does not correspond to the intensity of any single constituent. Most odors consists of organic compounds, although some simple compounds not containing carbon, such as hydrogen sulfide and ammonia, are odorants.
The perception of an odor effect is a two-step process. First, there is the physiological part; this is the detection of stimuli by receptors in the nose. The stimuli are recognized by the region of the human brain; because of this, an objective and analytical measure of odor is impossible. While odor feelings are personal perceptions, individual reactions are related, they relate to things such as gender, state of health, personal history. The ability to identify odor varies among decreases with age. Studies show there are sex differences in odor discrimination, women outperform men. Pregnant women have increased smell sensitivity, sometimes resulting in abnormal taste and smell perceptions, leading to food cravings or aversions; the ability to taste decreases with age as the sense of smell tends to dominate the sense of taste. Chronic smell problems are reported in small numbers for those in their mid-twenties, with numbers increasing with overall sensitivity beginning to decline in the second decade of life, deteriorating appreciably as age increases once over 70 years of age.
For most untrained people, the process of smelling gives little information concerning the specific ingredients of an odor. Their smell perception offers information related to the emotional impact. Experienced people, such as flavorists and perfumers, can pick out individual chemicals in complex mixtures through smell alone. Odor perception is a primal sense; the sense of smell enables pleasure, can subconsciously warn of danger, help locate mates, find food, or detect predators. Humans have a good sense of smell, correlated to an evolutionary decline in sense of smell. A human's sense of smell is just as good as many animals and can distinguish a diversity of odors—approximately 10,000 scents. Studies reported. Odors that a person is used to, such as their own body odor, are less noticeable than uncommon odors; this is due to habituation. After continuous odor exposure, the sense of smell is fatigued, but recovers if the stimulus is removed for a time. Odors can change due to environmental conditions: for example, odors tend to be more distinguishable in cool dry air.
Habituation affects the ability to distinguish odors after continuous exposure. The sensitivity and ability to discriminate odors diminishes with exposure, the brain tends to ignore continuous stimulus and focus on differences and changes in a particular sensation; when odorants are mixed, a habitual odorant is blocked. This depends on the strength of the odorants in the mixture, which can change the perception and processing of an odor; this process helps classify similar odors as well as adjust sensitivity to differences in complex stimuli. The primary gene sequences for thousands of olfactory receptors are known for the genomes of more than a dozen organisms, they are seven-helix-turn transmembrane proteins. But there are no known structures for any olfactory receptor. There is a conserved sequence in three quarters of all ORs; this is a tripodal metal-ion binding site, and
European Chemicals Agency
The European Chemicals Agency is an agency of the European Union which manages the technical and administrative aspects of the implementation of the European Union regulation called Registration, Evaluation and Restriction of Chemicals. ECHA is the driving force among regulatory authorities in implementing the EU's chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and addresses chemicals of concern, it is located in Finland. The agency headed by Executive Director Bjorn Hansen, started working on 1 June 2007; the REACH Regulation requires companies to provide information on the hazards and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most used substances have been registered; the information is technical but gives detail on the impact of each chemical on people and the environment.
This gives European consumers the right to ask retailers whether the goods they buy contain dangerous substances. The Classification and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU; this worldwide system makes it easier for workers and consumers to know the effects of chemicals and how to use products safely because the labels on products are now the same throughout the world. Companies need to notify ECHA of the labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100 000 substances; the information is available on their website. Consumers can check chemicals in the products. Biocidal products include, for example, insect disinfectants used in hospitals; the Biocidal Products Regulation ensures that there is enough information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation; the law on Prior Informed Consent sets guidelines for the import of hazardous chemicals.
Through this mechanism, countries due to receive hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have serious effects on human health and the environment are identified as Substances of Very High Concern 1; these are substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment and do not break down. Other substances considered. Companies manufacturing or importing articles containing these substances in a concentration above 0,1% weight of the article, have legal obligations, they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy. Once a substance has been identified in the EU as being of high concern, it will be added to a list; this list is available on ECHA's website and shows consumers and industry which chemicals are identified as SVHCs.
Substances placed on the Candidate List can move to another list. This means that, after a given date, companies will not be allowed to place the substance on the market or to use it, unless they have been given prior authorisation to do so by ECHA. One of the main aims of this listing process is to phase out SVHCs where possible. In its 2018 substance evaluation progress report, ECHA said chemical companies failed to provide “important safety information” in nearly three quarters of cases checked that year. "The numbers show a similar picture to previous years" the report said. The agency noted that member states need to develop risk management measures to control unsafe commercial use of chemicals in 71% of the substances checked. Executive Director Bjorn Hansen called non-compliance with REACH a "worry". Industry group CEFIC acknowledged the problem; the European Environmental Bureau called for faster enforcement to minimise chemical exposure. European Chemicals Bureau Official website