Monoamine releasing agent

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Amphetamine, the prototypical monoamine releasing agent, which acts on norepinephrine and dopamine.

A monoamine releasing agent (MRA), or simply monoamine releaser, is a drug that induces the release of a monoamine neurotransmitter from the presynaptic neuron into the synapse, leading to an increase in the extracellular concentrations of the neurotransmitter. Many drugs induce their effects in the body and/or brain via the release of monoamine neurotransmitters, e.g., trace amines, many substituted amphetamines, and related compounds.

Types of MRAs[edit]

MRAS can be classified by the monoamines they mainly release, although these drugs like on a spectrum.

Mechanism of action[edit]

MRAs cause the release of monoamine neurotransmitters by various complex mechanism of actions. They may enter the presynaptic neuron primarily via plasma membrane transporters, such as the dopamine transporter (DAT), norepinephrine transporter (NET), and serotonin transporter (SERT). Some, such as exogenous phenethylamine, amphetamine, and methamphetamine, can also diffuse directly across the cell membrane to varying degrees. Once inside the presynaptic neuron, they may inhibit the reuptake of monoamine neurotransmitters through vesicular monoamine transporter 2 (VMAT2) and release the neurotransmitters stores of synaptic vesicles into the cytoplasm by inducing reverse transport at VMAT2. MRAs can also bind to the intracellular receptor TAAR1 as agonists, which triggers a phosphorylation cascade via protein kinases that results in the phosphorylation of monoamine transporters located at the plasma membrane (i.e., the dopamine transporter, norepinephrine transporter, and serotonin transporter); upon phosphorylation, these transporters transport monoamines in reverse (i.e., they move monoamines from the neuronal cytoplasm into the synaptic cleft).[1] The combined effects of MRAs at VMAT2 and TAAR1 result in the release of neurotransmitters out of synaptic vesicles and the cell cytoplasm into the synaptic cleft where they bind to their associated presynaptic autoreceptors and postsynaptic receptors. Certain MRAs interact with other presynaptic intracellular receptors which promote monoamine neurotransmission as well (e.g., methamphetamine is also an agonist at σ1 receptor).

Effects[edit]

Monoamine release agents can have a wide variety of effects depending upon their selectivity for monoamines. Selective serotonin release agents such as fenfluramine and related compounds are described as dysphoric and lethargic in lower doses, and in higher doses some hallucinogenic effects have been reported.[2][2][3] Less selective serotonergic agents that stimulate an efflux in dopamine, such as MDMA are described as more pleasant, increasing energy, sociability and elevating mood.[4] Dopamine release agents, usually selective for both norepinephrine and dopamine have psychostimulant effect, causing an increase in energy, and elevated mood.[5] Other variables can significantly affect the subjective effects, such as infusion rate(increasing positive effects of cocaine), and expectancy.[6][6] Selectively noradrenergic drugs are minimally psychoactive, but as demonstrated by ephedrine may be distinguished from placebo, and trends towards liking,[7] they may also be ergogenic,[8] in contrast to solely reuptake inhibitor reboxetine.[9][10]

Selectivity[edit]

MRAs act to varying extents on serotonin, norepinephrine, and dopamine, some induce the release of all three neurotransmitters to a similar degree, like MDMA, while others are more selective. As examples, amphetamine and methamphetamine are NDRAs but only very weak releasers of serotonin (~60- and 30-fold less than dopamine, respectively) and MBDB is a fairly balanced SNRA but a weak releaser of dopamine (~6- and 10-fold lower for dopamine than norepinephrine or serotonin, respectively). Even more selective include agents like fenfluramine, a selective SRA, and ephedrine, a selective NRA, the differences in selectivity of these agents is the result of different affinities as substrates for the monoamine transporters, and thus differing ability to gain access into monoaminergic neurons and induce monoamine neurotransmitter release via the TAAR1 and VMAT2 proteins.

As of present, no selective DRAs are known, this is because it has proven extremely difficult to separate DAT affinity from NET affinity and retain releasing efficacy at the same time.[11] Several selective SDRAs are known however, though these compounds also act as non-selective serotonin receptor agonists.[12]

Activity profiles[edit]

Activity profiles of MRAs (EC50, nM)[13][14]
Compound NE DA 5-HT Type Class Ref
2C-E >100000 >100000 >100000 IA Phenethylamine [15]
2C-I >100000 >100000 >100000 IA Phenethylamine [15]
3-Chloromethcathinone ND 46.8 ND ND Cathinone [16]
3-Fluoroamphetamine 16.1 24.2 1937 NDRA Amphetamine [17]
3-Methylamphetamine 18.3 33.3 218 NDRA Amphetamine [17]
4-Fluoroamphetamine 28.0–37 51.5–200 730–939 NDRA Amphetamine [17][15]
cis-4-Methylaminorex 4.8 1.7 53.2 NDRA Aminorex [18]
4-Methylamphetamine 22.2 44.1 53.4 SNDRA Amphetamine [17]
4-Methylphenethylamine ND 271 ND ND Phenethylamine [16]
4-Methylthiomethamphetamine ND ND 21 ND Amphetamine [19]
4,4'-Dimethylaminorex ND ND ND SNDRA Aminorex ND
  cis-4,4'-Dimethylaminorex 11.8–26.9 8.6–10.9 17.7–18.5 SNDRA Aminorex [18][20]
  trans-4,4'-Dimethylaminorex 31.6 24.4 59.9 SNDRA Aminorex [20]
5-(2-Aminopropyl)indole 13.3–79 12.9–173 28–104.8 SNDRA Amphetamine [12][21]
  (R)-5-(2-Aminopropyl)indole 81 1062 177 SNRA Amphetamine [12]
5-Chloro-αMT 3434 54 16 SDRA Tryptamine [12]
5-Fluoro-αMT 126 32 19 SNDRA Tryptamine [12]
5-MeO-αMT 8900 1500 460 SNDRA Tryptamine [15]
5-MeO-DMT >100000 >100000 >100000 IA Tryptamine [15]
6-(2-Aminopropyl)indole 25.6 164.0 19.9 SNDRA Amphetamine [21]
α-Methyltryptamine 79 180 68 SNDRA Tryptamine [15]
Amfepramone (diethylpropion) >10000 >10000 >10000 PD Cathinone [22]
Aminorex 15.1–26.4 9.1–49.4 193–414 SNDRA Aminorex [23][18]
β-Ketophenethylamine ND 208 ND ND Phenethylamine [16]
BDB 540 2,300 180 NDRA Amphetamine [15]
D-Amphetamine 6.6–7.2 5.8–24.8 698–1765 NDRA Amphetamine [23][24]
Benzylpiperazine 62–68 175–600 ≥6050 NDRA Arylpiperazine [15][25][14]
Butylamphetamine ND IA ND ND Amphetamine [16]
L-Cathinone 12.4 18.5 2366 NDRA Cathinone [26]
Chlorphentermine >10000 2650 30.9 SRA Amphetamine [23]
DMPP 56 1207 26 SNRA Arylpiperazine [19]
Dopamine 66.2 86.9 >10000 NDRA Phenethylamine [23]
DPT >100000 >100000 >100000 IA Tryptamine [15]
Ephedrine ND ND ND NDRA Cathinol ND
  D-Ephedrine 43.1–72.4 236–1350 >10000 NDRA Cathinol [23]
  L-Ephedrine 218 2104 >10000 NRA Cathinol [23][26]
Ethcathinone 99.3 >1000 2118 NRA Cathinone [22]
Ethylamphetamine ND 296 ND ND Amphetamine [16]
Fenfluramine 739 >10000 79.3–108 SRA Amphetamine [23][27][28]
  D-Fenfluramine 302 >10000 51.7 SNRA Amphetamine [23][27]
  L-Fenfluramine >10000 >10000 147 SRA Amphetamine [27][29]
MBDB 3300 >100,000 540 SNRA Amphetamine [15]
mCPP ≥1400 63000 28–38.1 SRA Arylpiperazine [15][29][30]
MDA 108 190 160 SNDRA Amphetamine [28]
  (R)-MDA 290 900 310 SNDRA Amphetamine [28]
  (S)-MDA 50 98 100 SNDRA Amphetamine [28]
MDEA 2608 622 47 SNDRA Amphetamine [19]
  (R)-MDEA 651 507 52 SNDRA Amphetamine [19]
  (S)-MDEA RI RI 465 SRA Amphetamine [19]
MDMA 54.1–110 51.2–278 49.6–72 SNDRA Amphetamine [23][31][21][28]
  (R)-MDMA 560 3700 340 SDRA Amphetamine [28]
  (S)-MDMA 136 142 74 SNDRA Amphetamine [28]
MDMAR ND ND ND SNDRA Aminorex ND
  cis-MDMAR 14.8 10.2 43.9 SNDRA Aminorex [20]
  trans-MDMAR 38.9 36.2 73.4 SNDRA Aminorex [20]
Mephedrone 58–62.7 49.1–51 118.3–122 SNDRA Cathinone [31][24]
Methamnetamine 34 10 13 SNDRA Amphetamine [19]
Methamphetamine ND ND ND NDRA Amphetamine ND
  D-Methamphetamine 12.3–13.8 8.5–24.5 736–1291.7 NDRA Amphetamine [23][31]
  L-Methamphetamine 28.5 416 4640 NRA Amphetamine [23]
L-Methcathinone 13.1 14.8 1772 NDRA Cathinone [26]
Methylone 140–152.3 117–133.0 234–242.1 SNDRA Cathinone [31][24]
Naphthylisopropylamine 11.1 12.6 3.4 SNDRA Amphetamine [32]
Norepinephrine 164 869 >10000 NDRA Phenethylamine [23]
Norfenfluramine 168–170 1900–1925 104 SNRA Amphetamine [27][28]
oMPP 39.1 296–542 175 SNDRA Arylpiperazine [33][16]
PAL-738 65 58 23 SNDRA Phenylmorpholine [19]
Phenethylamine ND 39.5 ND NDRA Phenethylamine [16]
Phendimetrazine >10000 >10000 >100000 PD Phenylmorpholine [34]
Phenmetrazine 50.4 131 7765 NDRA Phenylmorpholine [34]
Phentermine 39.4 262 3511 NDRA Amphetamine [23]
D-Phenylalaninol 106 1355 >10000 NRA Amphetamine [33]
Phenylisobutylamine ND 225 ND ND Amphetamine [16]
Phenylpropanolamine ND ND ND NDRA Cathinol ND
  D-Norephedrine 42.1 302 >10000 NDRA Cathinol [26]
  L-Norephedrine 137 1371 >10000 NDRA Cathinol [26]
  D-Pseudoephedrine 30.1 294 >10000 NDRA Cathinol [26]
  L-Pseudoephedrine (cathine) 15.0 68.3 >10000 NDRA Cathinol [26]
pMPP 1500 11000 3200 SNRA Arylpiperazine [15]
pNPP >10000 >10000 43 SRA Arylpiperazine [19]
Propylamphetamine ND RI (1013) ND ND Amphetamine [16]
D-Pseudoephedrine 4092 9125 >10000 NDRA Cathinol [26]
L-Pseudoephedrine 224 1988 >10000 NRA Cathinol [26]
Pseudophenmetrazine 514 RI >10000 NRA Phenylmorpholine [34]
Psilocin >10000 >10000 561 SRA Tryptamine [19]
Serotonin >10000 >10000 44.4 SRA Tryptamine [23]
TFMPP ND >10000 121 SRA Arylpiperazine [25]
TFMCPP >10000 >10000 33 SRA Arylpiperazine [19]
Trimethoxyamphetamine >100000 >100000 16000 IA Amphetamine [15]
Tyramine 40.6 119 2775 NDRA Phenethylamine [23]

See also[edit]

References[edit]

  1. ^ Miller GM (January 2011). "The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity". Journal of Neurochemistry. 116 (2): 164–76. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101Freely accessible. PMID 21073468. 
  2. ^ a b Brust JC (2004). Neurological Aspects of Substance Abuse. Butterworth-Heinemann. pp. 117–. ISBN 978-0-7506-7313-6. 
  3. ^ United States. Congress. Senate. Select Committee on Small Business. Subcommittee on Monopoly and Anticompetitive Activities (1976). Competitive problems in the drug industry: hearings before Subcommittee on Monopoly and Anticompetitive Activities of the Select Committee on Small Business, United States Senate, Ninetieth Congress, first session. U.S. Government Printing Office. pp. 2–. 
  4. ^ Parrott AC, Stuart M (1 September 1997). "Ecstasy (MDMA), amphetamine, and LSD: comparative mood profiles in recreational polydrug users". Human Psychopharmacology: Clinical and Experimental. 12 (5): 501–504. doi:10.1002/(SICI)1099-1077(199709/10)12:53.0.CO;2-V. ISSN 1099-1077. 
  5. ^ Morean ME, de Wit H, King AC, Sofuoglu M, Rueger SY, O'Malley SS (May 2013). "The drug effects questionnaire: psychometric support across three drug types". Psychopharmacology. 227 (1): 177–92. doi:10.1007/s00213-012-2954-z. PMC 3624068Freely accessible. PMID 23271193. 
  6. ^ a b Nelson RA, Boyd SJ, Ziegelstein RC, Herning R, Cadet JL, Henningfield JE, Schuster CR, Contoreggi C, Gorelick DA (March 2006). "Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans". Drug and Alcohol Dependence. 82 (1): 19–24. doi:10.1016/j.drugalcdep.2005.08.004. PMID 16144747. 
  7. ^ Berlin I, Warot D, Aymard G, Acquaviva E, Legrand M, Labarthe B, Peyron I, Diquet B, Lechat P (September 2001). "Pharmacodynamics and pharmacokinetics of single nasal (5 mg and 10 mg) and oral (50 mg) doses of ephedrine in healthy subjects". European Journal of Clinical Pharmacology. 57 (6–7): 447–55. PMID 11699608. 
  8. ^ Powers ME (October 2001). "Ephedra and its application to sport performance: another concern for the athletic trainer?". Journal of Athletic Training. 36 (4): 420–4. PMC 155439Freely accessible. PMID 16558668. 
  9. ^ Meeusen R, Watson P, Hasegawa H, Roelands B, Piacentini MF (1 January 2006). "Central fatigue: the serotonin hypothesis and beyond". Sports Medicine. 36 (10): 881–909. doi:10.2165/00007256-200636100-00006. PMID 17004850. 
  10. ^ Roelands B, Meeusen R (March 2010). "Alterations in central fatigue by pharmacological manipulations of neurotransmitters in normal and high ambient temperature". Sports Medicine. 40 (3): 229–46. doi:10.2165/11533670-000000000-00000. PMID 20199121. 
  11. ^ Rothman RB, Blough BE, Baumann MH (January 2007). "Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions". The AAPS Journal. 9 (1): E1–10. doi:10.1208/aapsj0901001. PMC 2751297Freely accessible. PMID 17408232. 
  12. ^ a b c d e Banks ML, Bauer CT, Blough BE, Rothman RB, Partilla JS, Baumann MH, Negus SS (2014). "Abuse-related effects of dual dopamine/serotonin releasers with varying potency to release norepinephrine in male rats and rhesus monkeys". Exp Clin Psychopharmacol. 22 (3): 274–284. doi:10.1037/a0036595. PMC 4067459Freely accessible. PMID 24796848. 
  13. ^ Rothman RB, Baumann MH (2003). "Monoamine transporters and psychostimulant drugs". Eur. J. Pharmacol. 479 (1–3): 23–40. PMID 14612135. 
  14. ^ a b Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Current Topics in Medicinal Chemistry. 6 (17): 1845–59. doi:10.2174/156802606778249766. PMID 17017961. 
  15. ^ a b c d e f g h i j k l m Nagai F, Nonaka R, Satoh Hisashi Kamimura K (2007). "The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain". Eur. J. Pharmacol. 559 (2–3): 132–7. doi:10.1016/j.ejphar.2006.11.075. PMID 17223101. 
  16. ^ a b c d e f g h i Reith ME, Blough BE, Hong WC, Jones KT, Schmitt KC, Baumann MH, Partilla JS, Rothman RB, Katz JL (2015). "Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter". Drug Alcohol Depend. 147: 1–19. doi:10.1016/j.drugalcdep.2014.12.005. PMC 4297708Freely accessible. PMID 25548026. 
  17. ^ a b c d Wee S, Anderson KG, Baumann MH, Rothman RB, Blough BE, Woolverton WL (May 2005). "Relationship between the serotonergic activity and reinforcing effects of a series of amphetamine analogs". The Journal of Pharmacology and Experimental Therapeutics. 313 (2): 848–54. doi:10.1124/jpet.104.080101. PMID 15677348. 
  18. ^ a b c Brandt SD, Baumann MH, Partilla JS, Kavanagh PV, Power JD, Talbot B, Twamley B, Mahony O, O'Brien J, Elliott SP, Archer RP, Patrick J, Singh K, Dempster NM, Cosbey SH (2014). "Characterization of a novel and potentially lethal designer drug (±)-cis-para-methyl-4-methylaminorex (4,4'-DMAR, or 'Serotoni')". Drug Test Anal. 6 (7–8): 684–95. doi:10.1002/dta.1668. PMC 4128571Freely accessible. PMID 24841869. 
  19. ^ a b c d e f g h i j Rothman RB, Partilla JS, Baumann MH, Lightfoot-Siordia C, Blough BE (2012). "Studies of the biogenic amine transporters. 14. Identification of low-efficacy "partial" substrates for the biogenic amine transporters". J. Pharmacol. Exp. Ther. 341 (1): 251–62. doi:10.1124/jpet.111.188946. PMC 3364510Freely accessible. PMID 22271821. 
  20. ^ a b c d McLaughlin G, Morris N, Kavanagh PV, Power JD, Twamley B, O'Brien J, Talbot B, Dowling G, Mahony O, Brandt SD, Patrick J, Archer RP, Partilla JS, Baumann MH (2015). "Synthesis, characterization, and monoamine transporter activity of the new psychoactive substance 3',4'-methylenedioxy-4-methylaminorex (MDMAR)". Drug Test Anal. 7 (7): 555–64. doi:10.1002/dta.1732. PMC 5331736Freely accessible. PMID 25331619. 
  21. ^ a b c Marusich JA, Antonazzo KR, Blough BE, Brandt SD, Kavanagh PV, Partilla JS, Baumann MH (2016). "The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue". Neuropharmacology. 101: 68–75. doi:10.1016/j.neuropharm.2015.09.004. PMC 4681602Freely accessible. PMID 26362361. 
  22. ^ a b Yu H, Rothman RB, Dersch CM, Partilla JS, Rice KC (2000). "Uptake and release effects of diethylpropion and its metabolites with biogenic amine transporters". Bioorg. Med. Chem. 8 (12): 2689–92. PMID 11131159. 
  23. ^ a b c d e f g h i j k l m n o Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (January 2001). "Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin". Synapse. 39 (1): 32–41. doi:10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3. PMID 11071707. 
  24. ^ a b c Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB, Goldberg SR, Lupica CR, Sitte HH, Brandt SD, Tella SR, Cozzi NV, Schindler CW (2013). "Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive 'bath salts' products". Neuropsychopharmacology. 38 (4): 552–62. doi:10.1038/npp.2012.204. PMC 3572453Freely accessible. PMID 23072836. 
  25. ^ a b Baumann MH, Clark RD, Budzynski AG, Partilla JS, Blough BE, Rothman RB (2005). "N-substituted piperazines abused by humans mimic the molecular mechanism of 3,4-methylenedioxymethamphetamine (MDMA, or 'Ecstasy')". Neuropsychopharmacology. 30 (3): 550–60. doi:10.1038/sj.npp.1300585. PMID 15496938. 
  26. ^ a b c d e f g h i Rothman RB, Vu N, Partilla JS, Roth BL, Hufeisen SJ, Compton-Toth BA, Birkes J, Young R, Glennon RA (2003). "In vitro characterization of ephedrine-related stereoisomers at biogenic amine transporters and the receptorome reveals selective actions as norepinephrine transporter substrates". J. Pharmacol. Exp. Ther. 307 (1): 138–45. doi:10.1124/jpet.103.053975. PMID 12954796. 
  27. ^ a b c d Rothman RB, Clark RD, Partilla JS, Baumann MH (2003). "(+)-Fenfluramine and its major metabolite, (+)-norfenfluramine, are potent substrates for norepinephrine transporters". J. Pharmacol. Exp. Ther. 305 (3): 1191–9. doi:10.1124/jpet.103.049684. PMID 12649307. 
  28. ^ a b c d e f g h Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003). "3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro". Mol. Pharmacol. 63 (6): 1223–9. doi:10.1124/mol.63.6.1223. PMID 12761331. 
  29. ^ a b Rothman RB, Baumann MH (2002). "Therapeutic and adverse actions of serotonin transporter substrates". Pharmacol. Ther. 95 (1): 73–88. PMID 12163129. 
  30. ^ Rothman RB, Baumann MH (2002). "Serotonin releasing agents. Neurochemical, therapeutic and adverse effects". Pharmacol. Biochem. Behav. 71 (4): 825–36. PMID 11888573. 
  31. ^ a b c d Baumann MH, Ayestas MA, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012). "The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue". Neuropsychopharmacology. 37 (5): 1192–203. doi:10.1038/npp.2011.304. PMC 3306880Freely accessible. PMID 22169943. 
  32. ^ Rothman RB, Blough BE, Woolverton WL, Anderson KG, Negus SS, Mello NK, Roth BL, Baumann MH (June 2005). "Development of a rationally designed, low abuse potential, biogenic amine releaser that suppresses cocaine self-administration". The Journal of Pharmacology and Experimental Therapeutics. 313 (3): 1361–9. doi:10.1124/jpet.104.082503. PMID 15761112. 
  33. ^ a b Kohut SJ, Jacobs DS, Rothman RB, Partilla JS, Bergman J, Blough BE (2017). "Cocaine-like discriminative stimulus effects of "norepinephrine-preferring" monoamine releasers: time course and interaction studies in rhesus monkeys". Psychopharmacology. doi:10.1007/s00213-017-4731-5. PMID 28889212. 
  34. ^ a b c Rothman RB, Katsnelson M, Vu N, Partilla JS, Dersch CM, Blough BE, Baumann MH (2002). "Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain". Eur. J. Pharmacol. 447 (1): 51–7. PMID 12106802.