1.
Sphere
–
A sphere is a perfectly round geometrical object in three-dimensional space that is the surface of a completely round ball. This distance r is the radius of the ball, and the point is the center of the mathematical ball. The longest straight line through the ball, connecting two points of the sphere, passes through the center and its length is twice the radius. While outside mathematics the terms sphere and ball are used interchangeably. The ball and the share the same radius, diameter. The surface area of a sphere is, A =4 π r 2, at any given radius r, the incremental volume equals the product of the surface area at radius r and the thickness of a shell, δ V ≈ A ⋅ δ r. The total volume is the summation of all volumes, V ≈ ∑ A ⋅ δ r. In the limit as δr approaches zero this equation becomes, V = ∫0 r A d r ′, substitute V,43 π r 3 = ∫0 r A d r ′. Differentiating both sides of equation with respect to r yields A as a function of r,4 π r 2 = A. Which is generally abbreviated as, A =4 π r 2, alternatively, the area element on the sphere is given in spherical coordinates by dA = r2 sin θ dθ dφ. In Cartesian coordinates, the element is d S = r r 2 − ∑ i ≠ k x i 2 ∏ i ≠ k d x i, ∀ k. For more generality, see area element, the total area can thus be obtained by integration, A = ∫02 π ∫0 π r 2 sin θ d θ d φ =4 π r 2. In three dimensions, the volume inside a sphere is derived to be V =43 π r 3 where r is the radius of the sphere, archimedes first derived this formula, which shows that the volume inside a sphere is 2/3 that of a circumscribed cylinder. In modern mathematics, this formula can be derived using integral calculus, at any given x, the incremental volume equals the product of the cross-sectional area of the disk at x and its thickness, δ V ≈ π y 2 ⋅ δ x. The total volume is the summation of all volumes, V ≈ ∑ π y 2 ⋅ δ x. In the limit as δx approaches zero this equation becomes, V = ∫ − r r π y 2 d x. At any given x, a right-angled triangle connects x, y and r to the origin, hence, applying the Pythagorean theorem yields, thus, substituting y with a function of x gives, V = ∫ − r r π d x. Which can now be evaluated as follows, V = π − r r = π − π =43 π r 3

2.
Subspace topology
–
In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology. Given a topological space and a subset S of X, the topology on S is defined by τ S =. That is, a subset of S is open in the subspace topology if, if S is equipped with the subspace topology then it is a topological space in its own right, and is called a subspace of. Subsets of topological spaces are usually assumed to be equipped with the subspace topology unless otherwise stated, alternatively we can define the subspace topology for a subset S of X as the coarsest topology for which the inclusion map ι, S ↪ X is continuous. More generally, suppose ι is an injection from a set S to a topological space X, then the subspace topology on S is defined as the coarsest topology for which ι is continuous. The open sets in topology are precisely the ones of the form ι −1 for U open in X. S is then homeomorphic to its image in X and ι is called a topological embedding. A subspace S is called a subspace if the injection ι is an open map. Likewise it is called a subspace if the injection ι is a closed map. The distinction between a set and a space is often blurred notationally, for convenience, which can be a source of confusion when one first encounters these definitions. In the following, R represents the numbers with their usual topology. The subspace topology of the numbers, as a subspace of R, is the discrete topology. The rational numbers Q considered as a subspace of R do not have the discrete topology. If a and b are rational, then the intervals and are open and closed. The set as a subspace of R is both open and closed, whereas as a subset of R it is only closed, as a subspace of R, ∪ is composed of two disjoint open subsets, and is therefore a disconnected space. Let S = [0, 1) be a subspace of the real line R, then [0, 1/2) is open in S but not in R. Likewise [½, 1) is closed in S but not in R. S is both open and closed as a subset of itself but not as a subset of R, the subspace topology has the following characteristic property. Let Y be a subspace of X and let i, Y → X be the inclusion map, then for any topological space Z a map f, Z → Y is continuous if and only if the composite map i ∘ f is continuous. This property is characteristic in the sense that it can be used to define the topology on Y

3.
Euclidean space
–
In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces. It is named after the Ancient Greek mathematician Euclid of Alexandria, the term Euclidean distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions, classical Greek geometry defined the Euclidean plane and Euclidean three-dimensional space using certain postulates, while the other properties of these spaces were deduced as theorems. Geometric constructions are used to define rational numbers. It means that points of the space are specified with collections of real numbers and this approach brings the tools of algebra and calculus to bear on questions of geometry and has the advantage that it generalizes easily to Euclidean spaces of more than three dimensions. From the modern viewpoint, there is only one Euclidean space of each dimension. With Cartesian coordinates it is modelled by the coordinate space of the same dimension. In one dimension, this is the line, in two dimensions, it is the Cartesian plane, and in higher dimensions it is a coordinate space with three or more real number coordinates. One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance, for example, there are two fundamental operations on the plane. One is translation, which means a shifting of the plane so that point is shifted in the same direction. The other is rotation about a point in the plane. In order to all of this mathematically precise, the theory must clearly define the notions of distance, angle, translation. Even when used in theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments. The standard way to such space, as carried out in the remainder of this article, is to define the Euclidean plane as a two-dimensional real vector space equipped with an inner product. The reason for working with vector spaces instead of Rn is that it is often preferable to work in a coordinate-free manner. Once the Euclidean plane has been described in language, it is actually a simple matter to extend its concept to arbitrary dimensions. For the most part, the vocabulary, formulae, and calculations are not made any more difficult by the presence of more dimensions. Intuitively, the distinction says merely that there is no choice of where the origin should go in the space

4.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

5.
Topology
–
In mathematics, topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing. This can be studied by considering a collection of subsets, called open sets, important topological properties include connectedness and compactness. Topology developed as a field of study out of geometry and set theory, through analysis of such as space, dimension. Such ideas go back to Gottfried Leibniz, who in the 17th century envisioned the geometria situs, Leonhard Eulers Seven Bridges of Königsberg Problem and Polyhedron Formula are arguably the fields first theorems. The term topology was introduced by Johann Benedict Listing in the 19th century, by the middle of the 20th century, topology had become a major branch of mathematics. It defines the basic notions used in all branches of topology. Algebraic topology tries to measure degrees of connectivity using algebraic constructs such as homology, differential topology is the field dealing with differentiable functions on differentiable manifolds. It is closely related to geometry and together they make up the geometric theory of differentiable manifolds. Geometric topology primarily studies manifolds and their embeddings in other manifolds, a particularly active area is low-dimensional topology, which studies manifolds of four or fewer dimensions. This includes knot theory, the study of mathematical knots, Topology, as a well-defined mathematical discipline, originates in the early part of the twentieth century, but some isolated results can be traced back several centuries. Among these are certain questions in geometry investigated by Leonhard Euler and his 1736 paper on the Seven Bridges of Königsberg is regarded as one of the first practical applications of topology. On 14 November 1750 Euler wrote to a friend that he had realised the importance of the edges of a polyhedron and this led to his polyhedron formula, V − E + F =2. Some authorities regard this analysis as the first theorem, signalling the birth of topology, further contributions were made by Augustin-Louis Cauchy, Ludwig Schläfli, Johann Benedict Listing, Bernhard Riemann and Enrico Betti. Listing introduced the term Topologie in Vorstudien zur Topologie, written in his native German, in 1847, the term topologist in the sense of a specialist in topology was used in 1905 in the magazine Spectator. Their work was corrected, consolidated and greatly extended by Henri Poincaré, in 1895 he published his ground-breaking paper on Analysis Situs, which introduced the concepts now known as homotopy and homology, which are now considered part of algebraic topology. Unifying the work on function spaces of Georg Cantor, Vito Volterra, Cesare Arzelà, Jacques Hadamard, Giulio Ascoli and others, Maurice Fréchet introduced the metric space in 1906. A metric space is now considered a case of a general topological space. In 1914, Felix Hausdorff coined the term topological space and gave the definition for what is now called a Hausdorff space, currently, a topological space is a slight generalization of Hausdorff spaces, given in 1922 by Kazimierz Kuratowski

6.
Continuous function (topology)
–
In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a discontinuous function, a continuous function with a continuous inverse function is called a homeomorphism. Continuity of functions is one of the concepts of topology. The introductory portion of this focuses on the special case where the inputs and outputs of functions are real numbers. In addition, this article discusses the definition for the general case of functions between two metric spaces. In order theory, especially in theory, one considers a notion of continuity known as Scott continuity. Other forms of continuity do exist but they are not discussed in this article, as an example, consider the function h, which describes the height of a growing flower at time t. By contrast, if M denotes the amount of money in an account at time t, then the function jumps at each point in time when money is deposited or withdrawn. A form of the definition of continuity was first given by Bernard Bolzano in 1817. Cauchy defined infinitely small quantities in terms of quantities. The formal definition and the distinction between pointwise continuity and uniform continuity were first given by Bolzano in the 1830s but the work wasnt published until the 1930s, all three of those nonequivalent definitions of pointwise continuity are still in use. Eduard Heine provided the first published definition of continuity in 1872. This is not a definition of continuity since the function f =1 x is continuous on its whole domain of R ∖ A function is continuous at a point if it does not have a hole or jump. A “hole” or “jump” in the graph of a function if the value of the function at a point c differs from its limiting value along points that are nearby. Such a point is called a discontinuity, a function is then continuous if it has no holes or jumps, that is, if it is continuous at every point of its domain. Otherwise, a function is discontinuous, at the points where the value of the function differs from its limiting value, there are several ways to make this definition mathematically rigorous. These definitions are equivalent to one another, so the most convenient definition can be used to determine whether a function is continuous or not. In the definitions below, f, I → R. is a function defined on a subset I of the set R of real numbers and this subset I is referred to as the domain of f