1.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH

2.
Crystal system
–
In crystallography, the terms crystal system, crystal family and lattice system each refer to one of several classes of space groups, lattices, point groups or crystals. Informally, two crystals are in the crystal system if they have similar symmetries, though there are many exceptions to this. Space groups and crystals are divided into seven crystal systems according to their point groups, five of the crystal systems are essentially the same as five of the lattice systems, but the hexagonal and trigonal crystal systems differ from the hexagonal and rhombohedral lattice systems. The six crystal families are formed by combining the hexagonal and trigonal crystal systems into one hexagonal family, a lattice system is a class of lattices with the same set of lattice point groups, which are subgroups of the arithmetic crystal classes. The 14 Bravais lattices are grouped into seven lattice systems, triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal, in a crystal system, a set of point groups and their corresponding space groups are assigned to a lattice system. Of the 32 point groups that exist in three dimensions, most are assigned to only one system, in which case both the crystal and lattice systems have the same name. However, five point groups are assigned to two systems, rhombohedral and hexagonal, because both exhibit threefold rotational symmetry. These point groups are assigned to the crystal system. In total there are seven crystal systems, triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, a crystal family is determined by lattices and point groups. It is formed by combining crystal systems which have space groups assigned to a lattice system. In three dimensions, the families and systems are identical, except the hexagonal and trigonal crystal systems. In total there are six families, triclinic, monoclinic, orthorhombic, tetragonal, hexagonal. Spaces with less than three dimensions have the number of crystal systems, crystal families and lattice systems. In one-dimensional space, there is one crystal system, in 2D space, there are four crystal systems, oblique, rectangular, square and hexagonal. The relation between three-dimensional crystal families, crystal systems and lattice systems is shown in the table, Note. To avoid confusion of terminology, the term trigonal lattice is not used, if the original structure and inverted structure are identical, then the structure is centrosymmetric. Still, even for non-centrosymmetric case, inverted structure in some cases can be rotated to align with the original structure and this is the case of non-centrosymmetric achiral structure. If the inverted structure cannot be rotated to align with the structure, then the structure is chiral

3.
Cubic crystal system
–
In crystallography, the cubic crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals, there are three main varieties of these crystals, Primitive cubic Body-centered cubic, Face-centered cubic Each is subdivided into other variants listed below. Note that although the cell in these crystals is conventionally taken to be a cube. This is related to the fact that in most cubic crystal systems, a classic isometric crystal has square or pentagonal faces. The three Bravais lattices in the crystal system are, The primitive cubic system consists of one lattice point on each corner of the cube. Each atom at a point is then shared equally between eight adjacent cubes, and the unit cell therefore contains in total one atom. The body-centered cubic system has one point in the center of the unit cell in addition to the eight corner points. It has a net total of 2 lattice points per unit cell, Each sphere in a cF lattice has coordination number 12. The face-centered cubic system is related to the hexagonal close packed system. The plane of a cubic system is a hexagonal grid. Attempting to create a C-centered cubic crystal system would result in a simple tetragonal Bravais lattice, there are a total 36 cubic space groups. Other terms for hexoctahedral are, normal class, holohedral, ditesseral central class, a simple cubic unit cell has a single cubic void in the center. Additionally, there are 24 tetrahedral voids located in a square spacing around each octahedral void and these tetrahedral voids are not local maxima and are not technically voids, but they do occasionally appear in multi-atom unit cells. A face-centered cubic unit cell has eight tetrahedral voids located midway between each corner and the center of the cell, for a total of eight net tetrahedral voids. One important characteristic of a structure is its atomic packing factor. This is calculated by assuming all the atoms are identical spheres. The atomic packing factor is the proportion of space filled by these spheres, assuming one atom per lattice point, in a primitive cubic lattice with cube side length a, the sphere radius would be a⁄2 and the atomic packing factor turns out to be about 0.524. Similarly, in a bcc lattice, the atomic packing factor is 0.680, as a rule, since atoms in a solid attract each other, the more tightly packed arrangements of atoms tend to be more common

4.
Crystallographic point group
–
For a periodic crystal, the group must also be consistent with maintenance of the three-dimensional translational symmetry that defines crystallinity. The macroscopic properties of a crystal would look exactly the same before, in the classification of crystals, each point group is also known as a crystal class. There are infinitely many three-dimensional point groups, however, the crystallographic restriction of the infinite families of general point groups results in there being only 32 crystallographic point groups. These 32 point groups are one-and-the same as the 32 types of morphological crystalline symmetries derived in 1830 by Johann Friedrich Christian Hessel from a consideration of observed crystal forms, the point groups are denoted by their component symmetries. There are a few standard notations used by crystallographers, mineralogists, for the correspondence of the two systems below, see crystal system. In Schoenflies notation, point groups are denoted by a symbol with a subscript. The symbols used in crystallography mean the following, Cn indicates that the group has a rotation axis. Cnh is Cn with the addition of a plane perpendicular to the axis of rotation. Cnv is Cn with the addition of n mirror planes parallel to the axis of rotation, s2n denotes a group that contains only a 2n-fold rotation-reflection axis. Dn indicates that the group has a rotation axis plus n twofold axes perpendicular to that axis. Dnh has, in addition, a plane perpendicular to the n-fold axis. Dnd has, in addition to the elements of Dn, mirror planes parallel to the n-fold axis, the letter T indicates that the group has the symmetry of a tetrahedron. Td includes improper rotation operations, T excludes improper rotation operations, the letter O indicates that the group has the symmetry of an octahedron, with or without improper operations. Due to the crystallographic restriction theorem, n =1,2,3,4, d4d and D6d are actually forbidden because they contain improper rotations with n=8 and 12 respectively. The 27 point groups in the table plus T, Td, Th, O, an abbreviated form of the Hermann–Mauguin notation commonly used for space groups also serves to describe crystallographic point groups. Group names are Molecular symmetry Point group Space group Point groups in three dimensions Crystal system Point-group symbols in International Tables for Crystallography,12.1, pp. 818-820 Names and symbols of the 32 crystal classes in International Tables for Crystallography. 10.1, p.794 Pictorial overview of the 32 groups Point Groups - Flow Chart Inorganic Chemistry Group Theory Practice Problems

5.
H-M symbol
–
In geometry, Hermann–Mauguin notation is used to represent the symmetry elements in point groups, plane groups and space groups. It is named after the German crystallographer Carl Hermann and the French mineralogist Charles-Victor Mauguin and this notation is sometimes called international notation, because it was adopted as standard by the International Tables For Crystallography since their first edition in 1935. Rotation axes are denoted by a number n —1,2,3,4,5,6,7,8, for improper rotations, Hermann–Mauguin symbols show rotoinversion axes, unlike Schoenflies and Shubnikov notations, where the preference is given to rotation-reflection axes. The rotoinversion axes are represented by the number with a macron. The symbol for a plane is m. The direction of the plane is defined as the direction of perpendicular to the face. Hermann–Mauguin symbols show symmetrically non-equivalent axes and planes, the direction of a symmetry element is represented by its position in the Hermann–Mauguin symbol. If a rotation axis n and a mirror plane m have the same direction, if two or more axes have the same direction, the axis with higher symmetry is shown. Higher symmetry means that the axis generates a pattern with more points, for example, rotation axes 3,4,5,6,7,8 generate 3-, 4-, 5-, 6-, 7-, 8-point patterns, respectively. Improper rotation axes 3,4,5,6,7,8 generate 6-, 4-, 10-, 6-, 14-, 8-point patterns, if both, the rotation and rotoinversion axes satisfy the previous rule, the rotation axis should be chosen. For example, 3/m combination is equivalent to 6, since 6 generates 6 points, and 3 generates only 3,6 should be written instead of 3/m. Analogously, in the case when both 3 and 3 axes are present,3 should be written, however we write 4/m, not 4/m, because both 4 and 4 generate four points. Finally, the Hermann–Mauguin symbol depends on the type of the group and these groups may contain only two-fold axes, mirror planes, and inversion center. These are the point groups 1 and 1,2, m, and 2/m, and 222, 2/m2/m2/m. If the symbol contains three positions, then they denote symmetry elements in the x, y, z direction, First position — primary direction — z direction, assigned to the higher-order axis. Second position — symmetrically equivalent secondary directions, which are perpendicular to the z-axis and these can be 2, m, or 2/m. Third position — symmetrically equivalent tertiary directions, passing between secondary directions and these can be 2, m, or 2/m. These are the crystallographic groups 3,32, 3m,3, and 32/m,4,422, 4mm,4, 42m, 4/m, and 4/m2/m2/m, and 6,622, 6mm,6, 6m2, 6/m, and 6/m2/m2/m

6.
Space group
–
In mathematics, physics and chemistry, a space group is the symmetry group of a configuration in space, usually in three dimensions. In three dimensions, there are 219 distinct types, or 230 if chiral copies are considered distinct, Space groups are also studied in dimensions other than 3 where they are sometimes called Bieberbach groups, and are discrete cocompact groups of isometries of an oriented Euclidean space. In crystallography, space groups are called the crystallographic or Fedorov groups. A definitive source regarding 3-dimensional space groups is the International Tables for Crystallography, in 1879 Leonhard Sohncke listed the 65 space groups whose elements preserve the orientation. More accurately, he listed 66 groups, but Fedorov and Schönflies both noticed that two of them were really the same, the space groups in 3 dimensions were first enumerated by Fedorov, and shortly afterwards were independently enumerated by Schönflies. The correct list of 230 space groups was found by 1892 during correspondence between Fedorov and Schönflies, burckhardt describes the history of the discovery of the space groups in detail. The space groups in three dimensions are made from combinations of the 32 crystallographic point groups with the 14 Bravais lattices, the combination of all these symmetry operations results in a total of 230 different space groups describing all possible crystal symmetries. The elements of the space group fixing a point of space are rotations, reflections, the identity element, the translations form a normal abelian subgroup of rank 3, called the Bravais lattice. There are 14 possible types of Bravais lattice, the quotient of the space group by the Bravais lattice is a finite group which is one of the 32 possible point groups. Translation is defined as the moves from one point to another point. A glide plane is a reflection in a plane, followed by a parallel with that plane. This is noted by a, b or c, depending on which axis the glide is along. There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, the latter is called the diamond glide plane as it features in the diamond structure. In 17 space groups, due to the centering of the cell, the glides occur in two directions simultaneously, i. e. the same glide plane can be called b or c, a or b. For example, group Abm2 could be also called Acm2, group Ccca could be called Cccb, in 1992, it was suggested to use symbol e for such planes. The symbols for five groups have been modified, A screw axis is a rotation about an axis. These are noted by a number, n, to describe the degree of rotation, the degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. So,21 is a rotation followed by a translation of 1/2 of the lattice vector

7.
Potassium
–
Potassium is a chemical element with symbol K and atomic number 19. It was first isolated from potash, the ashes of plants, in the periodic table, potassium is one of the alkali metals. Potassium in nature only in ionic salts. It is found dissolved in sea water, and is part of many minerals, naturally occurring potassium is composed of three isotopes, of which 40K is radioactive. Traces of 40K are found in all potassium, and it is the most common radioisotope in the human body, Potassium is chemically very similar to sodium, the previous element in Group 1 of the periodic table. They have a similar energy, which allows for each atom to give up its sole outer electron. That they are different elements combine with the same anions to make similar salts was suspected in 1702. Most industrial applications of potassium exploit the high solubility in water of potassium compounds, heavy crop production rapidly depletes the soil of potassium, and this can be remedied with agricultural fertilizers containing potassium, accounting for 95% of global potassium chemical production. Potassium ions are necessary for the function of all living cells, fresh fruits and vegetables are good dietary sources of potassium. Potassium is the second least dense metal after lithium and it is a soft solid with a low melting point, and can be easily cut with a knife. Freshly cut potassium is silvery in appearance, but it begins to tarnish toward gray immediately on exposure to air, in a flame test, potassium and its compounds emit a lilac color with a peak emission wavelength of 766.5 nanometers. Neutral potassium atoms have 19 electrons, one more than the stable configuration of the noble gas argon. This process requires so little energy that potassium is readily oxidized by atmospheric oxygen, in contrast, the second ionization energy is very high, because removal of two electrons breaks the stable noble gas electronic configuration. Potassium therefore does not readily form compounds with the state of +2 or higher. Potassium is an active metal that reacts violently with oxygen in water. With oxygen it forms potassium peroxide, and with water potassium forms potassium hydroxide, the reaction of potassium with water is dangerous because of its violent exothermic character and the production of hydrogen gas. Hydrogen reacts again with atmospheric oxygen, producing water, which reacts with the remaining potassium and this reaction requires only traces of water, because of this, potassium and the liquid sodium-potassium — NaK — are potent desiccants that can be used to dry solvents prior to distillation. Because of the sensitivity of potassium to water and air, reactions with other elements are only in an inert atmosphere such as argon gas using air-free techniques

8.
Aluminium
–
Aluminium or aluminum is a chemical element in the boron group with symbol Al and atomic number 13. It is a silvery-white, soft, nonmagnetic, ductile metal, Aluminium metal is so chemically reactive that native specimens are rare and limited to extreme reducing environments. Instead, it is combined in over 270 different minerals. The chief ore of aluminium is bauxite, Aluminium is remarkable for the metals low density and its ability to resist corrosion through the phenomenon of passivation. Aluminium and its alloys are vital to the industry and important in transportation and structures, such as building facades. The oxides and sulfates are the most useful compounds of aluminium, despite its prevalence in the environment, no known form of life uses aluminium salts metabolically, but aluminium is well tolerated by plants and animals. Because of these salts abundance, the potential for a role for them is of continuing interest. Aluminium is a soft, durable, lightweight, ductile. It is nonmagnetic and does not easily ignite, a fresh film of aluminium serves as a good reflector of visible light and an excellent reflector of medium and far infrared radiation. The yield strength of aluminium is 7–11 MPa, while aluminium alloys have yield strengths ranging from 200 MPa to 600 MPa. Aluminium has about one-third the density and stiffness of steel and it is easily machined, cast, drawn and extruded. Aluminium atoms are arranged in a cubic structure. Aluminium has an energy of approximately 200 mJ/m2. Aluminium is a thermal and electrical conductor, having 59% the conductivity of copper. Aluminium is capable of superconductivity, with a critical temperature of 1.2 kelvin. Aluminium is the most common material for the fabrication of superconducting qubits, the strongest aluminium alloys are less corrosion resistant due to galvanic reactions with alloyed copper. This corrosion resistance is reduced by aqueous salts, particularly in the presence of dissimilar metals. In highly acidic solutions, aluminium reacts with water to form hydrogen, primarily because it is corroded by dissolved chlorides, such as common sodium chloride, household plumbing is never made from aluminium