1.
Mathematics
–
Mathematics is the study of topics such as quantity, structure, space, and change. There is a range of views among mathematicians and philosophers as to the exact scope, Mathematicians seek out patterns and use them to formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proof, when mathematical structures are good models of real phenomena, then mathematical reasoning can provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry, rigorous arguments first appeared in Greek mathematics, most notably in Euclids Elements. Galileo Galilei said, The universe cannot be read until we have learned the language and it is written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which means it is humanly impossible to comprehend a single word. Without these, one is wandering about in a dark labyrinth, carl Friedrich Gauss referred to mathematics as the Queen of the Sciences. Benjamin Peirce called mathematics the science that draws necessary conclusions, David Hilbert said of mathematics, We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules, rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise. Albert Einstein stated that as far as the laws of mathematics refer to reality, they are not certain, Mathematics is essential in many fields, including natural science, engineering, medicine, finance and the social sciences. Applied mathematics has led to entirely new mathematical disciplines, such as statistics, Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, the history of mathematics can be seen as an ever-increasing series of abstractions. The earliest uses of mathematics were in trading, land measurement, painting and weaving patterns, in Babylonian mathematics elementary arithmetic first appears in the archaeological record. Numeracy pre-dated writing and numeral systems have many and diverse. Between 600 and 300 BC the Ancient Greeks began a study of mathematics in its own right with Greek mathematics. Mathematics has since been extended, and there has been a fruitful interaction between mathematics and science, to the benefit of both. Mathematical discoveries continue to be made today, the overwhelming majority of works in this ocean contain new mathematical theorems and their proofs. The word máthēma is derived from μανθάνω, while the modern Greek equivalent is μαθαίνω, in Greece, the word for mathematics came to have the narrower and more technical meaning mathematical study even in Classical times

2.
Band (mathematics)
–
In mathematics, a band is a semigroup in which every element is idempotent. Bands were first studied and named by A. H. Clifford, a class of bands forms a variety if it is closed under formation of subsemigroups, homomorphic images and direct product. Each variety of bands can be defined by a single defining identity, semilattices are exactly commutative bands, that is, they are the bands satisfying the equation xy = yx for all x and y. A left zero band is a band satisfying the equation xy = x, symmetrically, a right zero band is one satisfying xy = y, so that the Cayley table has constant columns. There is a classification of rectangular bands. Left zero and right zero bands are bands, and in fact every rectangular band is isomorphic to a direct product of a left zero band. All rectangular bands of prime order are zero bands, either left or right, a rectangular band is said to be purely rectangular if it is not a left or right zero band. Note that if the set I is empty in the result, the rectangular band I × J is independent of J. This is why the above result only gives an equivalence between nonempty rectangular bands and pairs of nonempty sets, a normal band is a band S satisfying zxyz = zyxz for all x, y, and z ∈ S. This is the equation used to define medial magmas, and so a normal band may also be called a medial band. Left-regular bands thus show up naturally in the study of posets, a right-regular band is a band S satisfying xyx = yx for all x, y ∈ S Any right-regular band becomes a left-regular band using the opposite product. Indeed, every variety of bands has a version, this gives rise to the reflection symmetry in the figure below. The complete structure of this lattice is known, in particular, it is countable, complete, the sublattice consisting of the 13 varieties of regular bands is shown in the figure. The varieties of bands, semilattices, and right-zero bands are the three atoms of this lattice. Note that each variety of bands shown in the figure is defined by just one identity and this is not a coincidence, in fact, every variety of bands can be defined by a single identity. P. Varieties of idempotent semigroups, Algebra and Logic,9, 153–164, brown, Ken, Semigroups, rings, and Markov chains, J. Theoret. Clifford, Alfred Hoblitzelle, Bands of semigroups, Proceedings of the American Mathematical Society,5, 499–504, doi,10. 1090/S0002-9939-1954-0062119-9, Clifford, Alfred Hoblitzelle, Preston, Gordon Bamford, The Algebraic Theory of Semigroups, Moscow, Mir. Fennemore, Charles, All varieties of bands, Semigroup Forum,1, 172–179, the lattice of equational classes of idempotent semigroups, Journal of Algebra,15, 195–224, doi,10. 1016/0021-869390073-6

3.
American Mathematical Society
–
The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. It was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, john Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, the result was the Bulletin of the New York Mathematical Society, with Fiske as editor-in-chief. The de facto journal, as intended, was influential in increasing membership, the popularity of the Bulletin soon led to Transactions of the American Mathematical Society and Proceedings of the American Mathematical Society, which were also de facto journals. In 1891 Charlotte Scott became the first woman to join the society, the society reorganized under its present name and became a national society in 1894, and that year Scott served as the first woman on the first Council of the American Mathematical Society. In 1951, the headquarters moved from New York City to Providence. The society later added an office in Ann Arbor, Michigan in 1984, in 1954 the society called for the creation of a new teaching degree, a Doctor of Arts in Mathematics, similar to a PhD but without a research thesis. Mary W. Gray challenged that situation by sitting in on the Council meeting in Atlantic City, when she was told she had to leave, she refused saying she would wait until the police came. After that time, Council meetings were open to observers and the process of democratization of the Society had begun, julia Robinson was the first female president of the American Mathematical Society but was unable to complete her term as she was suffering from leukemia. In 1988 the Journal of the American Mathematical Society was created, the 2013 Joint Mathematics Meeting in San Diego drew over 6,600 attendees. Each of the four sections of the AMS hold meetings in the spring. The society also co-sponsors meetings with other mathematical societies. The AMS selects a class of Fellows who have made outstanding contributions to the advancement of mathematics. The AMS publishes Mathematical Reviews, a database of reviews of mathematical publications, various journals, in 1997 the AMS acquired the Chelsea Publishing Company, which it continues to use as an imprint. Blogs, Blog on Blogs e-Mentoring Network in the Mathematical Sciences AMS Graduate Student Blog PhD + Epsilon On the Market Some prizes are awarded jointly with other mathematical organizations. The AMS is led by the President, who is elected for a two-year term, morrey, Jr. Oscar Zariski Nathan Jacobson Saunders Mac Lane Lipman Bers R. H. Andrews Eric M. Friedlander David Vogan Robert L

4.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker