Right ascension
Right ascension is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the point above the earth in question. When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system. An old term, right ascension refers to the ascension, or the point on the celestial equator that rises with any celestial object as seen from Earth's equator, where the celestial equator intersects the horizon at a right angle, it contrasts with oblique ascension, the point on the celestial equator that rises with any celestial object as seen from most latitudes on Earth, where the celestial equator intersects the horizon at an oblique angle. Right ascension is the celestial equivalent of terrestrial longitude. Both right ascension and longitude measure an angle from a primary direction on an equator. Right ascension is measured from the Sun at the March equinox i.e. the First Point of Aries, the place on the celestial sphere where the Sun crosses the celestial equator from south to north at the March equinox and is located in the constellation Pisces.
Right ascension is measured continuously in a full circle from that alignment of Earth and Sun in space, that equinox, the measurement increasing towards the east. As seen from Earth, objects noted to have 12h RA are longest visible at the March equinox. On those dates at midnight, such objects will reach their highest point. How high depends on their declination. Any units of angular measure could have been chosen for right ascension, but it is customarily measured in hours and seconds, with 24h being equivalent to a full circle. Astronomers have chosen this unit to measure right ascension because they measure a star's location by timing its passage through the highest point in the sky as the Earth rotates; the line which passes through the highest point in the sky, called the meridian, is the projection of a longitude line onto the celestial sphere. Since a complete circle contains 24h of right ascension or 360°, 1/24 of a circle is measured as 1h of right ascension, or 15°. A full circle, measured in right-ascension units, contains 24 × 60 × 60 = 86400s, or 24 × 60 = 1440m, or 24h.
Because right ascensions are measured in hours, they can be used to time the positions of objects in the sky. For example, if a star with RA = 1h 30m 00s is at its meridian a star with RA = 20h 00m 00s will be on the/at its meridian 18.5 sidereal hours later. Sidereal hour angle, used in celestial navigation, is similar to right ascension, but increases westward rather than eastward. Measured in degrees, it is the complement of right ascension with respect to 24h, it is important not to confuse sidereal hour angle with the astronomical concept of hour angle, which measures angular distance of an object westward from the local meridian. The Earth's axis rotates westward about the poles of the ecliptic, completing one cycle in about 26,000 years; this movement, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates are inherently relative to the year of their observation, astronomers specify them with reference to a particular year, known as an epoch.
Coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch. Right ascension for "fixed stars" near the ecliptic and equator increases by about 3.05 seconds per year on average, or 5.1 minutes per century, but for fixed stars further from the ecliptic the rate of change can be anything from negative infinity to positive infinity. The right ascension of Polaris is increasing quickly; the North Ecliptic Pole in Draco and the South Ecliptic Pole in Dorado are always at right ascension 18h and 6h respectively. The used standard epoch is J2000.0, January 1, 2000 at 12:00 TT. The prefix "J" indicates. Prior to J2000.0, astronomers used the successive Besselian epochs B1875.0, B1900.0, B1950.0. The concept of right ascension has been known at least as far back as Hipparchus who measured stars in equatorial coordinates in the 2nd century BC, but Hipparchus and his successors made their star catalogs in ecliptic coordinates, the use of RA was limited to special cases.
With the invention of the telescope, it became possible for astronomers to observe celestial objects in greater detail, provided that the telescope could be kept pointed at the object for a period of time. The easiest way to do, to use an equatorial mount, which allows the telescope to be aligned with one of its two pivots parallel to the Earth's axis. A motorized clock drive is used with an equatorial mount to cancel out the Earth's rotation; as the equatorial mount became adopted for observation, the equatorial coordinate system, which includes right ascension, was adopted at the same time for simplicity. Equatorial mounts could be pointed at objects with known right ascension and declination by the use of setting circles; the first star catalog to use right ascen
Parsec
The parsec is a unit of length used to measure large distances to astronomical objects outside the Solar System. A parsec is defined as the distance at which one astronomical unit subtends an angle of one arcsecond, which corresponds to 648000/π astronomical units. One parsec is equal to 31 trillion kilometres or 19 trillion miles; the nearest star, Proxima Centauri, is about 1.3 parsecs from the Sun. Most of the stars visible to the unaided eye in the night sky are within 500 parsecs of the Sun; the parsec unit was first suggested in 1913 by the British astronomer Herbert Hall Turner. Named as a portmanteau of the parallax of one arcsecond, it was defined to make calculations of astronomical distances from only their raw observational data quick and easy for astronomers. For this reason, it is the unit preferred in astronomy and astrophysics, though the light-year remains prominent in popular science texts and common usage. Although parsecs are used for the shorter distances within the Milky Way, multiples of parsecs are required for the larger scales in the universe, including kiloparsecs for the more distant objects within and around the Milky Way, megaparsecs for mid-distance galaxies, gigaparsecs for many quasars and the most distant galaxies.
In August 2015, the IAU passed Resolution B2, which, as part of the definition of a standardized absolute and apparent bolometric magnitude scale, mentioned an existing explicit definition of the parsec as 648000/π astronomical units, or 3.08567758149137×1016 metres. This corresponds to the small-angle definition of the parsec found in many contemporary astronomical references; the parsec is defined as being equal to the length of the longer leg of an elongated imaginary right triangle in space. The two dimensions on which this triangle is based are its shorter leg, of length one astronomical unit, the subtended angle of the vertex opposite that leg, measuring one arc second. Applying the rules of trigonometry to these two values, the unit length of the other leg of the triangle can be derived. One of the oldest methods used by astronomers to calculate the distance to a star is to record the difference in angle between two measurements of the position of the star in the sky; the first measurement is taken from the Earth on one side of the Sun, the second is taken half a year when the Earth is on the opposite side of the Sun.
The distance between the two positions of the Earth when the two measurements were taken is twice the distance between the Earth and the Sun. The difference in angle between the two measurements is twice the parallax angle, formed by lines from the Sun and Earth to the star at the distant vertex; the distance to the star could be calculated using trigonometry. The first successful published direct measurements of an object at interstellar distances were undertaken by German astronomer Friedrich Wilhelm Bessel in 1838, who used this approach to calculate the 3.5-parsec distance of 61 Cygni. The parallax of a star is defined as half of the angular distance that a star appears to move relative to the celestial sphere as Earth orbits the Sun. Equivalently, it is the subtended angle, from that star's perspective, of the semimajor axis of the Earth's orbit; the star, the Sun and the Earth form the corners of an imaginary right triangle in space: the right angle is the corner at the Sun, the corner at the star is the parallax angle.
The length of the opposite side to the parallax angle is the distance from the Earth to the Sun (defined as one astronomical unit, the length of the adjacent side gives the distance from the sun to the star. Therefore, given a measurement of the parallax angle, along with the rules of trigonometry, the distance from the Sun to the star can be found. A parsec is defined as the length of the side adjacent to the vertex occupied by a star whose parallax angle is one arcsecond; the use of the parsec as a unit of distance follows from Bessel's method, because the distance in parsecs can be computed as the reciprocal of the parallax angle in arcseconds. No trigonometric functions are required in this relationship because the small angles involved mean that the approximate solution of the skinny triangle can be applied. Though it may have been used before, the term parsec was first mentioned in an astronomical publication in 1913. Astronomer Royal Frank Watson Dyson expressed his concern for the need of a name for that unit of distance.
He proposed the name astron, but mentioned that Carl Charlier had suggested siriometer and Herbert Hall Turner had proposed parsec. It was Turner's proposal. In the diagram above, S represents the Sun, E the Earth at one point in its orbit, thus the distance ES is one astronomical unit. The angle SDE is one arcsecond so by definition D is a point in space at a distance of one parsec from the Sun. Through trigonometry, the distance SD is calculated as follows: S D = E S tan 1 ″ S D ≈ E S 1 ″ = 1 au 1 60 × 60 × π
Aquarius (constellation)
Aquarius is a constellation of the zodiac, situated between Capricornus and Pisces. Its name is Latin for "water-carrier" or "cup-carrier", its symbol is, a representation of water. Aquarius is one of the oldest of the recognized constellations along the zodiac, it was one of the 48 constellations listed by the 2nd century astronomer Ptolemy, it remains one of the 88 modern constellations. It is found in a region called the Sea due to its profusion of constellations with watery associations such as Cetus the whale, Pisces the fish, Eridanus the river. At apparent magnitude 2.9, Beta Aquarii is the brightest star in the constellation. Aquarius is identified as GU. LA "The Great One" in the Babylonian star catalogues and represents the god Ea himself, depicted holding an overflowing vase; the Babylonian star-figure appears on entitlement stones and cylinder seals from the second millennium. It contained the winter solstice in the Early Bronze Age. In Old Babylonian astronomy, Ea was the ruler of the southernmost quarter of the Sun's path, the "Way of Ea", corresponding to the period of 45 days on either side of winter solstice.
Aquarius was associated with the destructive floods that the Babylonians experienced, thus was negatively connoted. In Ancient Egypt astronomy, Aquarius was associated with the annual flood of the Nile. In the Greek tradition, the constellation came to be represented as a single vase from which a stream poured down to Piscis Austrinus; the name in the Hindu zodiac is kumbha "water-pitcher". In Greek mythology, Aquarius is sometimes associated with Deucalion, the son of Prometheus who built a ship with his wife Pyrrha to survive an imminent flood, they sailed for nine days before washing ashore on Mount Parnassus. Aquarius is sometimes identified with beautiful Ganymede, a youth in Greek mythology and the son of Trojan king Tros, taken to Mount Olympus by Zeus to act as cup-carrier to the gods. Neighboring Aquila represents the eagle, under Zeus' command. An alternative version of the tale recounts Ganymede's kidnapping by the goddess of the dawn, motivated by her affection for young men, yet another figure associated with the water bearer is Cecrops I, a king of Athens who sacrificed water instead of wine to the gods.
In the first century, Ptolemy's Almagest established the common Western depiction of Aquarius. His water jar, an asterism itself, consists of Gamma, Pi, Zeta Aquarii; the water bearer's head is represented by 5th magnitude 25 Aquarii while his left shoulder is Beta Aquarii. In Chinese astronomy, the stream of water flowing from the Water Jar was depicted as the "Army of Yu-Lin"; the name "Yu-lin" means "feathers and forests", referring to the numerous light-footed soldiers from the northern reaches of the empire represented by these faint stars. The constellation's stars were the most numerous of any Chinese constellation, numbering 45, the majority of which were located in modern Aquarius; the celestial army was protected by the wall Leibizhen, which counted Iota, Lambda and Sigma Aquarii among its 12 stars. 88, 89, 98 Aquarii represent Fou-youe, the axes used as weapons and for hostage executions. In Aquarius is Loui-pi-tchin, the ramparts that stretch from 29 and 27 Piscium and 33 and 30 Aquarii through Phi, Lambda and Iota Aquarii to Delta, Gamma and Epsilon Capricorni.
Near the border with Cetus, the axe Fuyue was represented by three stars. Tienliecheng has a disputed position; the Water Jar asterism was seen to the ancient Chinese as Fenmu. Nearby, the emperors' mausoleum Xiuliang stood, demarcated by Kappa Aquarii and three other collinear stars. Ku and Qi, each composed of two stars, were located in the same region. Three of the Chinese lunar mansions shared their name with constellations. Nu the name for the 10th lunar mansion, was a handmaiden represented by Epsilon, Mu, 3, 4 Aquarii; the 11th lunar mansion shared its name with the constellation Xu, formed by Beta Aquarii and Alpha Equulei. Wei, the rooftop and 12th lunar mansion, was a V-shaped constellation formed by Alpha Aquarii, Theta Pegasi, Epsilon Pegasi. Despite both its prominent position on the zodiac and its large size, Aquarius has no bright stars, its four brightest stars being less than magnitude 2. However, recent research has shown that there are several stars lying within its borders that possess planetary systems.
The two brightest stars and Beta Aquarii, are luminous yellow supergiants, of spectral types G0Ib and G2Ib that were once hot blue-white B-class main sequence stars 5 to 9 times as massive as the Sun. The two are moving through space perpendicular to the plane of the Milky Way. Just shading Alpha, Beta Aquarii is the brightest star in Aquarius with an apparent magnitude of 2.91. It has the proper name of Sadalsuud. Having cooled and swollen to around 50 times the Sun
Stellar parallax
Stellar parallax is the apparent shift of position of any nearby star against the background of distant objects. Created by the different orbital positions of Earth, the small observed shift is largest at time intervals of about six months, when Earth arrives at opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations; the parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit. Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for hundreds of years, it was first observed in 1806 by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work "Osservazione e riflessione sulla parallasse annua dall’alfa della Lira". In 1838 Friedrich Bessel made the first successful parallax measurement, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star's parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. With 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs too approximate to be useful when obtained by this technique; this limits the applicability of parallax as a measurement of distance to objects that are close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects. Stellar parallax measures are given in the tiny units of arcseconds, or in thousandths of arcseconds; the distance unit parsec is defined as the length of the leg of a right triangle adjacent to the angle of one arcsecond at one vertex, where the other leg is 1 AU long. Because stellar parallaxes and distances all involve such skinny right triangles, a convenient trigonometric approximation can be used to convert parallaxes to distance.
The approximate distance is the reciprocal of the parallax: d ≃ 1 / p. For example, Proxima Centauri, whose parallax is 0.7687, is 1 / 0.7687 parsecs = 1.3009 parsecs distant. Stellar parallax is so small that its apparent absence was used as a scientific argument against heliocentrism during the early modern age, it is clear from Euclid's geometry that the effect would be undetectable if the stars were far enough away, but for various reasons such gigantic distances involved seemed implausible: it was one of Tycho Brahe's principal objections to Copernican heliocentrism that in order for it to be compatible with the lack of observable stellar parallax, there would have to be an enormous and unlikely void between the orbit of Saturn and the eighth sphere. James Bradley first tried to measure stellar parallaxes in 1729; the stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of Earth's axis, catalogued 3222 stars. Stellar parallax is most measured using annual parallax, defined as the difference in position of a star as seen from Earth and Sun, i.e. the angle subtended at a star by the mean radius of Earth's orbit around the Sun.
The parsec is defined as the distance. Annual parallax is measured by observing the position of a star at different times of the year as Earth moves through its orbit. Measurement of annual parallax was the first reliable way to determine the distances to the closest stars; the first successful measurements of stellar parallax were made by Friedrich Bessel in 1838 for the star 61 Cygni using a heliometer. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond. Stellar parallax remains the standard for calibrating other measurement methods. Accurate calculations of distance based on stellar parallax require a measurement of the distance from Earth to the Sun, now known to exquisite accuracy based on radar reflection off the surfaces of planets.
The angles involved in these calculations are small and thus difficult to measure. The nearest star to the Sun, Proxima Centauri, has a parallax of 0.7687 ± 0.0003 arcsec. This angle is that subtended by an object 2 centimeters in diameter located 5.3 kilometers away. In 1989 the satellite Hipparcos was launched for obtaining parallaxes and proper motions of nearby stars, increasing the number of stellar parallaxes measured to milliarcsecond accuracy a thousandfold. So, Hipparcos is only able to measure parallax angles for stars up to about 1,600 light-years away, a little more than one percent of the diameter of the Milky Way Galaxy; the Hubble telescope WFC3 now has a precision of 20 to 40 microarcseconds, enabling reliable distance measurements u
Star catalogue
A star catalogue or star catalog, is an astronomical catalogue that lists stars. In astronomy, many stars are referred to by catalogue numbers. There are a great many different star catalogues which have been produced for different purposes over the years, this article covers only some of the more quoted ones. Star catalogues were compiled by many different ancient people, including the Babylonians, Chinese and Arabs, they were sometimes accompanied by a star chart for illustration. Most modern catalogues are available in electronic format and can be downloaded from space agencies data centres. Completeness and accuracy is described by the weakest apparent magnitude V and the accuracy of the positions. From their existing records, it is known that the ancient Egyptians recorded the names of only a few identifiable constellations and a list of thirty-six decans that were used as a star clock; the Egyptians called the circumpolar star "the star that cannot perish" and, although they made no known formal star catalogues, they nonetheless created extensive star charts of the night sky which adorn the coffins and ceilings of tomb chambers.
Although the ancient Sumerians were the first to record the names of constellations on clay tablets, the earliest known star catalogues were compiled by the ancient Babylonians of Mesopotamia in the late 2nd millennium BC, during the Kassite Period. They are better known by their Assyrian-era name'Three Stars Each'; these star catalogues, written on clay tablets, listed thirty-six stars: twelve for "Anu" along the celestial equator, twelve for "Ea" south of that, twelve for "Enlil" to the north. The Mul. Apin lists, dated to sometime before the Neo-Babylonian Empire, are direct textual descendants of the "Three Stars Each" lists and their constellation patterns show similarities to those of Greek civilization. In Ancient Greece, the astronomer and mathematician Eudoxus laid down a full set of the classical constellations around 370 BC, his catalogue Phaenomena, rewritten by Aratus of Soli between 275 and 250 BC as a didactic poem, became one of the most consulted astronomical texts in antiquity and beyond.
It contains descriptions of the positions of the stars, the shapes of the constellations and provided information on their relative times of rising and setting. In the 3rd century BC, the Greek astronomers Timocharis of Alexandria and Aristillus created another star catalogue. Hipparchus completed his star catalogue in 129 BC, which he compared to Timocharis' and discovered that the longitude of the stars had changed over time; this led him to determine the first value of the precession of the equinoxes. In the 2nd century, Ptolemy of Roman Egypt published a star catalogue as part of his Almagest, which listed 1,022 stars visible from Alexandria. Ptolemy's catalogue was based entirely on an earlier one by Hipparchus, it remained the standard star catalogue in the Arab worlds for over eight centuries. The Islamic astronomer al-Sufi updated it in 964, the star positions were redetermined by Ulugh Beg in 1437, but it was not superseded until the appearance of the thousand-star catalogue of Tycho Brahe in 1598.
Although the ancient Vedas of India specified how the ecliptic was to be divided into twenty-eight nakshatra, Indian constellation patterns were borrowed from Greek ones sometime after Alexander's conquests in Asia in the 4th century BC. The earliest known inscriptions for Chinese star names were written on oracle bones and date to the Shang Dynasty. Sources dating from the Zhou Dynasty which provide star names include the Zuo Zhuan, the Shi Jing, the "Canon of Yao" in the Book of Documents; the Lüshi Chunqiu written by the Qin statesman Lü Buwei provides most of the names for the twenty-eight mansions. An earlier lacquerware chest found in the Tomb of Marquis Yi of Zeng contains a complete list of the names of the twenty-eight mansions. Star catalogues are traditionally attributed to Shi Shen and Gan De, two rather obscure Chinese astronomers who may have been active in the 4th century BC of the Warring States period; the Shi Shen astronomy is attributed to Shi Shen, the Astronomic star observation to Gan De.
It was not until the Han Dynasty that astronomers started to observe and record names for all the stars that were apparent in the night sky, not just those around the ecliptic. A star catalogue is featured in one of the chapters of the late 2nd-century-BC history work Records of the Grand Historian by Sima Qian and contains the "schools" of Shi Shen and Gan De's work. Sima's catalogue—the Book of Celestial Offices —includes some 90 constellations, the stars therein named after temples, ideas in philosophy, locations such as markets and shops, different people such as farmers and soldiers. For his Spiritual Constitution of the Universe of 120 AD, the astronomer Zhang Heng compiled a star catalogue comprising 124 constellations. Chinese constellation names were adopted by the Koreans and Japanese. A large number of star catalogues were published by Muslim astronomers in the medieval Islamic world; these were Zij treatises, including Arzachel's Tables of Toledo, the Maragheh observatory's Zij-i Ilkhani and Ulugh Beg's Zij-i-Sultani.
Other fam
Bortle scale
The Bortle scale is a nine-level numeric scale that measures the night sky's brightness of a particular location. It quantifies the astronomical observability of celestial objects and the interference caused by light pollution. John E. Bortle created the scale and published it in the February 2001 edition of Sky & Telescope magazine to help amateur astronomers evaluate the darkness of an observing site, secondarily, to compare the darkness of observing sites; the scale ranges from Class 1, the darkest skies available on Earth, through Class 9, inner-city skies. It gives several criteria for each level beyond naked-eye limiting magnitude; the accuracy and utility of the scale have been questioned in recent research. The table below summarizes Bortle's descriptions of the classes. 4673 Bortle Amateur astronomy Dark-sky movement The End of Night International Dark-Sky Association Light pollution Night sky Sky brightness Sky & Telescope Official website by Sky & Telescope Interactive demo of the Bortle Scale International Dark-Sky Association ObservingSites.com
Astrometry
Astrometry is the branch of astronomy that involves precise measurements of the positions and movements of stars and other celestial bodies. The information obtained by astrometric measurements provides information on the kinematics and physical origin of the Solar System and our galaxy, the Milky Way; the history of astrometry is linked to the history of star catalogues, which gave astronomers reference points for objects in the sky so they could track their movements. This can be dated back to Hipparchus, who around 190 BC used the catalogue of his predecessors Timocharis and Aristillus to discover Earth's precession. In doing so, he developed the brightness scale still in use today. Hipparchus compiled a catalogue with their positions. Hipparchus's successor, included a catalogue of 1,022 stars in his work the Almagest, giving their location and brightness. In the 10th century, Abd al-Rahman al-Sufi carried out observations on the stars and described their positions and star color. Ibn Yunus observed more than 10,000 entries for the Sun's position for many years using a large astrolabe with a diameter of nearly 1.4 metres.
His observations on eclipses were still used centuries in Simon Newcomb's investigations on the motion of the Moon, while his other observations of the motions of the planets Jupiter and Saturn inspired Laplace's Obliquity of the Ecliptic and Inequalities of Jupiter and Saturn. In the 15th century, the Timurid astronomer Ulugh Beg compiled the Zij-i-Sultani, in which he catalogued 1,019 stars. Like the earlier catalogs of Hipparchus and Ptolemy, Ulugh Beg's catalogue is estimated to have been precise to within 20 minutes of arc. In the 16th century, Tycho Brahe used improved instruments, including large mural instruments, to measure star positions more than with a precision of 15–35 arcsec. Taqi al-Din measured the right ascension of the stars at the Constantinople Observatory of Taqi ad-Din using the "observational clock" he invented; when telescopes became commonplace, setting circles sped measurements James Bradley first tried to measure stellar parallaxes in 1729. The stellar movement proved too insignificant for his telescope, but he instead discovered the aberration of light and the nutation of the Earth's axis.
His cataloguing of 3222 stars was refined in 1807 by Friedrich Bessel, the father of modern astrometry. He made the first measurement of stellar parallax: 0.3 arcsec for the binary star 61 Cygni. Being difficult to measure, only about 60 stellar parallaxes had been obtained by the end of the 19th century by use of the filar micrometer. Astrographs using astronomical photographic plates sped the process in the early 20th century. Automated plate-measuring machines and more sophisticated computer technology of the 1960s allowed more efficient compilation of star catalogues. In the 1980s, charge-coupled devices replaced photographic plates and reduced optical uncertainties to one milliarcsecond; this technology made astrometry less expensive. In 1989, the European Space Agency's Hipparcos satellite took astrometry into orbit, where it could be less affected by mechanical forces of the Earth and optical distortions from its atmosphere. Operated from 1989 to 1993, Hipparcos measured large and small angles on the sky with much greater precision than any previous optical telescopes.
During its 4-year run, the positions and proper motions of 118,218 stars were determined with an unprecedented degree of accuracy. A new "Tycho catalog" drew together a database of 1,058,332 to within 20-30 mas. Additional catalogues were compiled for the 23,882 double/multiple stars and 11,597 variable stars analyzed during the Hipparcos mission. Today, the catalogue most used is USNO-B1.0, an all-sky catalogue that tracks proper motions, positions and other characteristics for over one billion stellar objects. During the past 50 years, 7,435 Schmidt camera plates were used to complete several sky surveys that make the data in USNO-B1.0 accurate to within 0.2 arcsec. Apart from the fundamental function of providing astronomers with a reference frame to report their observations in, astrometry is fundamental for fields like celestial mechanics, stellar dynamics and galactic astronomy. In observational astronomy, astrometric techniques help identify stellar objects by their unique motions, it is instrumental for keeping time, in that UTC is the atomic time synchronized to Earth's rotation by means of exact astronomical observations.
Astrometry is an important step in the cosmic distance ladder because it establishes parallax distance estimates for stars in the Milky Way. Astrometry has been used to support claims of extrasolar planet detection by measuring the displacement the proposed planets cause in their parent star's apparent position on the sky, due to their mutual orbit around the center of mass of the system. Astrometry is more accurate in space missions that are not affected by the distorting effects of the Earth's atmosphere. NASA's planned Space Interferometry Mission was to utilize astrometric techniques to detect terrestrial planets orbiting 200 or so of the nearest solar-type stars; the European Space Agency's Gaia Mission, launched in 2013, applies astrometric techniques in its stellar census. In addition to the detection of exoplanets, it can be used to determine their mass. Astrometric measurements are used by astrophysicists to constrain certain models in celestial mechanics. By measuring the velocities of pulsars, it is possible to put a limit on the asymmetry of supernova explosions.
A