Order-7 heptagonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Order-7 heptagonal tiling
Order-7 heptagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic regular tiling
Vertex configuration 77
Schläfli symbol {7,7}
Wythoff symbol 7 | 7 2
Coxeter diagram CDel node 1.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png
Symmetry group [7,7], (*772)
Dual self dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the order-7 heptagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {7,7}, constructed from seven heptagons around every vertex; as such, it is self-dual.

Related tilings[edit]

See also[edit]


  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

External links[edit]