Octagon

In geometry, an octagon is an eight-sided polygon or 8-gon. A regular octagon has Schläfli symbol and can be constructed as a quasiregular truncated square, t, which alternates two types of edges. A truncated octagon, t; the sum of all the internal angles of any octagon is 1080°. As with all polygons, the external angles total 360°. If squares are constructed all internally or all externally on the sides of an octagon the midpoints of the segments connecting the centers of opposite squares form a quadrilateral, both equidiagonal and orthodiagonal; the midpoint octagon of a reference octagon has its eight vertices at the midpoints of the sides of the reference octagon. If squares are constructed all internally or all externally on the sides of the midpoint octagon the midpoints of the segments connecting the centers of opposite squares themselves form the vertices of a square. A regular octagon is a closed figure with sides of the same length and internal angles of the same size, it has eight lines of reflective symmetry and rotational symmetry of order 8.

A regular octagon is represented by the Schläfli symbol. The internal angle at each vertex of a regular octagon is 135°; the central angle is 45°. The area of a regular octagon of side length a is given by A = 2 cot π 8 a 2 = 2 a 2 ≃ 4.828 a 2. In terms of the circumradius R, the area is A = 4 sin π 4 R 2 = 2 2 R 2 ≃ 2.828 R 2. In terms of the apothem r, the area is A = 8 tan π 8 r 2 = 8 r 2 ≃ 3.314 r 2. These last two coefficients bracket the value of the area of the unit circle; the area can be expressed as A = S 2 − a 2, where S is the span of the octagon, or the second-shortest diagonal. This is proven if one takes an octagon, draws a square around the outside and takes the corner triangles and places them with right angles pointed inward, forming a square; the edges of this square are each the length of the base. Given the length of a side a, the span S is S = a 2 + a + a 2 = a ≈ 2.414 a. The area is as above: A = 2 − a 2 = 2 a 2 ≈ 4.828 a 2. Expressed in terms of the span, the area is A = 2 S 2 ≈ 0.828 S 2.

Another simple formula for the area is A = 2 a S. More the span S is known, the length of the sides, a, is to be determined, as when cutting a square piece of material into a regular octagon. From the above, a ≈ S / 2.414. The two end lengths e on each side, as well as being e = a / 2, may be calculated as e = / 2; the circumradius of the regular octagon in terms of the side length a is R = a, the inradius is r = a. The regular octagon, in ter

Isotoxal figure

In geometry, a polytope, or a tiling, is isotoxal or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation and/or reflection that will move one edge to the other, while leaving the region occupied by the object unchanged; the term isotoxal is derived from the Greek τοξον meaning arc. An isotoxal polygon is an equilateral polygon; the duals of isotoxal polygons are isogonal polygons. In general, an isotoxal 2n-gon will have Dn dihedral symmetry. A rhombus is an isotoxal polygon with D2 symmetry. All regular polygons are isotoxal, having double the minimum symmetry order: a regular n-gon has Dn dihedral symmetry. A regular 2n-gon is an isotoxal polygon and can be marked with alternately colored vertices, removing the line of reflection through the mid-edges. Regular polyhedra are isohedral and isotoxal. Quasiregular polyhedra are not isohedral. Not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal.

For instance, the truncated icosahedron has two types of edges: hexagon-hexagon and hexagon-pentagon, it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge. An isotoxal polyhedron has the same dihedral angle for all edges. There are nine convex isotoxal polyhedra formed from the Platonic solids, 8 formed by the Kepler–Poinsot polyhedra, six more as quasiregular star polyhedra and their duals. There are at least 5 polygonal tilings of the Euclidean plane that are isotoxal, infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the regular hyperbolic tilings, non-right groups. Table of polyhedron dihedral angles Vertex-transitive Face-transitive Cell-transitive Peter R. Cromwell, Cambridge University Press 1997, ISBN 0-521-55432-2, p. 371 Transitivity Grünbaum, Branko. C.. Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. CS1 maint: Multiple names: authors list Coxeter, Harold Scott MacDonald.

"Uniform polyhedra", Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 246: 401–450, doi:10.1098/rsta.1954.0003, ISSN 0080-4614, JSTOR 91532, MR 0062446

Orbifold notation

In geometry, orbifold notation is a system, invented by William Thurston and popularized by the mathematician John Conway, for representing types of symmetry groups in two-dimensional spaces of constant curvature. The advantage of the notation is that it describes these groups in a way which indicates many of the groups' properties: in particular, it describes the orbifold obtained by taking the quotient of Euclidean space by the group under consideration. Groups representable in this notation include the point groups on the sphere, the frieze groups and wallpaper groups of the Euclidean plane, their analogues on the hyperbolic plane; the following types of Euclidean transformation can occur in a group described by orbifold notation: reflection through a line translation by a vector rotation of finite order around a point infinite rotation around a line in 3-space glide-reflection, i.e. reflection followed by translation. All translations which occur are assumed to form a discrete subgroup of the group symmetries being described.

Each group is denoted in orbifold notation by a finite string made up from the following symbols: positive integers 1, 2, 3, … the infinity symbol, ∞ the asterisk, * the symbol o, called a wonder and a handle because it topologically represents a torus closed surface. Patterns repeat by two translation; the symbol ×, called a miracle and represents a topological crosscap where a pattern repeats as a mirror image without crossing a mirror line. A string written in boldface represents a group of symmetries of Euclidean 3-space. A string not written in boldface represents a group of symmetries of the Euclidean plane, assumed to contain two independent translations; each symbol corresponds to a distinct transformation: an integer n to the left of an asterisk indicates a rotation of order n around a gyration point an integer n to the right of an asterisk indicates a transformation of order 2n which rotates around a kaleidoscopic point and reflects through a line an × indicates a glide reflection the symbol ∞ indicates infinite rotational symmetry around a line.

By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way; the exceptional symbol o indicates that there are two linearly independent translations. An orbifold symbol is called good if it is not one of the following: p, pq, *p, *pq, for p,q>=2, p≠q. An object is chiral; the corresponding orbifold is non-orientable otherwise. The Euler characteristic of an orbifold can be read from its Conway symbol; each feature has a value: n without or before an asterisk counts as n − 1 n n after an asterisk counts as n − 1 2 n asterisk and × count as 1 o counts as 2. Subtracting the sum of these values from 2 gives the Euler characteristic. If the sum of the feature values is 2, the order is infinite, i.e. the notation represents a wallpaper group or a frieze group. Indeed, Conway's "Magic Theorem" indicates that the 17 wallpaper groups are those with the sum of the feature values equal to 2.

Otherwise, the order is 2 divided by the Euler characteristic. The following groups are isomorphic: 1* and *11 22 and 221 *22 and *221 2* and 2*1; this is. The symmetry of a 2D object without translational symmetry can be described by the 3D symmetry type by adding a third dimension to the object which does not add or spoil symmetry. For example, for a 2D image we can consider a piece of carton with that image displayed on one side, thus we have n• and *n•. The bullet is added on one- and two-dimensional groups to imply the existence of a fixed point. A 1D image can be drawn horizontally on a piece of carton, with a provision to avoid additional symmetry with respect to the line of the image, e.g. by drawing a horizontal bar under the image. Thus the discrete symmetry groups in one dimension are *•, *1•, ∞• and *∞•. Another way of constructing a 3D object from a 1D or 2D object for describing the symmetry is taking the Cartesian product of the object and an asymmetric 2D or 1D object, respectively.

*Schönflies's point group notation is extended here as infinite cases of the equivalent dihedral points symmetries §The diagram shows one fundamental domain in yellow, with reflection lines in blue, glide reflection lines in dashed green, translation normals in red, 2-fold gyration points as small green squares. A first few hyperbolic groups, ordered by their Euler characteristic are: Mutation of orbifolds Fibrifold notation - an extension of orbifold notation for 3d space groups John H. Conway, Olaf Delgado Friedrichs, Daniel H. Huson, W

Wythoff symbol

In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. A Wythoff symbol consists of a vertical bar, it represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 4 2 with Oh symmetry, 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D 2 h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space. In three dimensions, Wythoff's construction begins by choosing a generator point on the triangle. If the distance of this point from each of the sides is non-zero, the point must be chosen to be an equal distance from each edge.

A perpendicular line is dropped between the generator point and every face that it does not lie on. The three numbers in Wythoff's symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, which are π / p, π / q and π / r radians respectively; the triangle is represented with the same numbers, written. The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following: p | q r indicates that the generator lies on the corner p, p q | r indicates that the generator lies on the edge between p and q, p q r | indicates that the generator lies in the interior of the triangle. In this notation the mirrors are labeled by the reflection-order of the opposite vertex; the p, q, r values are listed before the bar. The one impossible symbol | p q r implies the generator point is on all mirrors, only possible if the triangle is degenerate, reduced to a point; this unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, but odd-numbered reflected images are ignored.

The resulting figure has rotational symmetry only. The generator point can either be off each mirror, activated or not; this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. A node is circled. There are seven generator points with each set of p, q, r: There are three special cases: p q | – This is a mixture of p q r | and p q s |, containing only the faces shared by both. | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isn't Wythoff-constructible. There are 4 symmetry classes of reflection on the sphere, three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are listed. Point groups: dihedral symmetry, p = 2, 3, 4 … tetrahedral symmetry octahedral symmetry icosahedral symmetry Euclidean groups: *442 symmetry: 45°-45°-90° triangle *632 symmetry: 30°-60°-90° triangle *333 symmetry: 60°-60°-60° triangleHyperbolic groups: *732 symmetry *832 symmetry *433 symmetry *443 symmetry *444 symmetry *542 symmetry *642 symmetry...

The above symmetry groups only include the integer solutions on the sphere. The list of Schwarz triangles includes rational numbers, determine the full set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a fundamental domain, colored by and odd reflections. Selected tilings created by the Wythoff con

Hyperbolic geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R. Hyperbolic plane geometry is the geometry of saddle surfaces and pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. A modern use of hyperbolic geometry is in the theory of special relativity Minkowski spacetime and gyrovector space; when geometers first realised they were working with something other than the standard Euclidean geometry they described their geometry under many different names. In the former Soviet Union, it is called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky; this page is about the 2-dimensional hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. Hyperbolic geometry can be extended to three and more dimensions.

Hyperbolic geometry is more related to Euclidean geometry than it seems: the only axiomatic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds of absolute geometry and hyperbolic. All theorems of absolute geometry, including the first 28 propositions of book one of Euclid's Elements, are valid in Euclidean and hyperbolic geometry. Propositions 27 and 28 of Book One of Euclid's Elements prove the existence of parallel/non-intersecting lines; this difference has many consequences: concepts that are equivalent in Euclidean geometry are not equivalent in hyperbolic geometry. Further, because of the angle of parallelism, hyperbolic geometry has an absolute scale, a relation between distance and angle measurements. Single lines in hyperbolic geometry have the same properties as single straight lines in Euclidean geometry. For example, two points uniquely define a line, lines can be infinitely extended.

Two intersecting lines have the same properties as two intersecting lines in Euclidean geometry. For example, two lines can intersect in no more than one point, intersecting lines have equal opposite angles, adjacent angles of intersecting lines are supplementary; when we add a third line there are properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given 2 intersecting lines there are infinitely many lines that do not intersect either of the given lines; these properties all are independent of the model used if the lines may look radically different. Non-intersecting lines in hyperbolic geometry have properties that differ from non-intersecting lines in Euclidean geometry: For any line R and any point P which does not lie on R, in the plane containing line R and point P there are at least two distinct lines through P that do not intersect R; this implies that there are through P an infinite number of coplanar lines that do not intersect R.

These non-intersecting lines are divided into two classes: Two of the lines are limiting parallels: there is one in the direction of each of the ideal points at the "ends" of R, asymptotically approaching R, always getting closer to R, but never meeting it. All other non-intersecting lines have a point of minimum distance and diverge from both sides of that point, are called ultraparallel, diverging parallel or sometimes non-intersecting; some geometers use parallel lines instead of limiting parallel lines, with ultraparallel lines being just non-intersecting. These limiting parallels make an angle θ with PB. For ultraparallel lines, the ultraparallel theorem states that there is a unique line in the hyperbolic plane, perpendicular to each pair of ultraparallel lines. In hyperbolic geometry, the circumference of a circle of radius r is greater than 2 π r. Let R = 1 − K, where K is the Gaussian curvature of the plane. In hyperbolic geometry, K is negative, so the square root is of a positive number.

The circumference of a circle of radius r is equal to: 2 π R sinh r R. And the area of the enclosed disk is: 4 π R 2 sinh 2 r 2 R = 2 π R 2. Therefore, in hyperbolic geometry the ratio of a circle's circumference to its radius is always greater than 2 π, though

Dual polyhedron

In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a symmetric class. Thus, the regular polyhedra – the Platonic solids and Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual; the dual of an isogonal polyhedron, having equivalent vertices, is one, isohedral, having equivalent faces. The dual of an isotoxal polyhedron is isotoxal. Duality is related to reciprocity or polarity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.

There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality; the duality of polyhedra is defined in terms of polar reciprocation about a concentric sphere. Here, each vertex is associated with a face plane so that the ray from the center to the vertex is perpendicular to the plane, the product of the distances from the center to each is equal to the square of the radius. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2; the vertices of the dual are the poles reciprocal to the face planes of the original, the faces of the dual lie in the polars reciprocal to the vertices of the original. Any two adjacent vertices define an edge, these will reciprocate to two adjacent faces which intersect to define an edge of the dual; this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, r 1 and r 2 the distances from its centre to the pole and its polar, then: r 1.

R 2 = r 0 2 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, as in the Dorman Luke construction described below. However, it is possible to reciprocate a polyhedron about any sphere, the resulting form of the dual will depend on the size and position of the sphere; the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point, this is taken to be the centroid. Failing that, a circumscribed sphere, inscribed sphere, or midsphere is used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required'plane at infinity'; some theorists prefer to say that there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, in a manner suitable for making models.

The concept of duality here is related to the duality in projective geometry, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra, but for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, Grünbaum argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron. Any convex polyhedron can be distorted into a canonical form, in which a unit midsphere exists tangent to every edge, such that the average position of the points of tangency is the center of the sphere; this form is unique up to congruences. If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points and so must be canonical, it is the canonical dual, the two together form a canonical dual pair.

When a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of polyhedra are abstractly dual; the vertices and edges of a convex polyhedron form a graph, embedded on a topological sphere, the surface of the polyhedron. The same graph can be projected to form

Hosohedron

In geometry, an n-gonal hosohedron is a tessellation of lunes on a spherical surface, such that each lune shares the same two polar opposite vertices. A regular n-gonal hosohedron has Schläfli symbol, with each spherical lune having internal angle 2π/n radians. For a regular polyhedron whose Schläfli symbol is, the number of polygonal faces may be found by: N 2 = 4 n 2 m + 2 n − m n The Platonic solids known to antiquity are the only integer solutions for m ≥ 3 and n ≥ 3; the restriction m ≥ 3 enforces. When considering polyhedra as a spherical tiling, this restriction may be relaxed, since digons can be represented as spherical lunes, having non-zero area. Allowing m = 2 admits a new infinite class of regular polyhedra, which are the hosohedra. On a spherical surface, the polyhedron is represented as n abutting lunes, with interior angles of 2π/n. All these lunes share two common vertices; the digonal faces of a 2n-hosohedron, represents the fundamental domains of dihedral symmetry in three dimensions: Cnv, order 2n.

The reflection domains can be shown as alternately colored lunes as mirror images. Bisecting the lunes into two spherical triangles creates bipyramids and define dihedral symmetry Dnh, order 4n; the tetragonal hosohedron is topologically equivalent to the bicylinder Steinmetz solid, the intersection of two cylinders at right-angles. The dual of the n-gonal hosohedron is the n-gonal dihedron; the polyhedron is self-dual, is both a hosohedron and a dihedron. A hosohedron may be modified in the same manner as the other polyhedra to produce a truncated variation; the truncated n-gonal hosohedron is the n-gonal prism. In the limit the hosohedron becomes an apeirogonal hosohedron as a 2-dimensional tessellation: Multidimensional analogues in general are called hosotopes. A regular hosotope with Schläfli symbol has each with a vertex figure; the two-dimensional hosotope, is a digon. The term “hosohedron” was coined by H. S. M. Coxeter, derives from the Greek ὅσος “as many”, the idea being that a hosohedron can have “as many faces as desired”.

Polyhedron Polytope McMullen, Peter. S. M. Dover Publications Inc. ISBN 0-486-61480-8 Weisstein, Eric W. "Hosohedron". MathWorld