1.
Square kilometre
–
Square kilometre or square kilometer, symbol km2, is a multiple of the square metre, the SI unit of area or surface area. For example,3 km2 is equal to 3×2 =3,000,000 m2, topographical map grids are worked out in metres, with the grid lines being 1,000 metres apart. 1,100,000 maps are divided into squares representing 1 km2, each square on the map being one square centimetre in area, for 1,50,000 maps, the grid lines are 2 cm apart. Each square on the map is 2 cm by 2 cm, for 1,25,000 maps, the grid lines are 4 cm apart. Each square on the map is 4 cm by 4 cm, in each case, the grid lines enclose one square kilometre. The area enclosed by the walls of many European medieval cities were about one square kilometre, the approximate area of the old walled cities can often be worked out by fitting the course of the wall to a rectangle or an oval. Examples include Delft, Netherlands 52°0′54″N 4°21′34″E The walled city of Delft was approximately rectangular, the approximate length of rectangle was about 1.30 kilometres. The approximate width of the rectangle was about 0.75 kilometres, a perfect rectangle with these measurements has an area of 1. 30×0.75 =0.9 km2 Lucca 43°50′38″N 10°30′2″E The medieval city is roughly rectangular with rounded north-east and north-west corners. The maximum distance from east to west is 1.36 kilometres, the maximum distance from north to south is 0.80 kilometres. A perfect rectangle of these dimensions would be 1. 36×0.80 =1.088 km2, Brugge 51°12′39″N 3°13′28″E The medieval city of Brugge, a major centre in Flanders, was roughly oval or elliptical in shape with the longer or semi-major axis running north and south. The maximum distance from north to south is 2.53 kilometres, the maximum distance from east to west is 1.81 kilometres. A perfect ellipse of these dimensions would be 2.53 ×1.81 × =3.597 km2. Chester United Kingdom 53°12′1″N 2°52′45″W Chester is one of the smaller English cities that has a city wall. The distance from Northgate to Watergate is about 855 metres. The distance from Eastgate to Westgate is about 589 metres, a perfect rectangle of these dimensions would be × =0.504 km2. Parks come in all sizes, a few are almost exactly one kilometre in area. Here are some examples, Riverside Country Park, UK. Brierley Forest Park, rio de Los Angeles State Park, California, USA Jones County Central Park, Iowa, USA. Using the figures published by golf course architects Crafter and Mogford, assuming a 6,000 metres 18-hole course, an area of 80 hectares needs to be allocated for the course itself
2.
Hectare
–
The hectare is an SI accepted metric system unit of area equal to 100 ares and primarily used in the measurement of land as a metric replacement for the imperial acre. An acre is about 0.405 hectare and one hectare contains about 2.47 acres, in 1795, when the metric system was introduced, the are was defined as 100 square metres and the hectare was thus 100 ares or 1⁄100 km2. When the metric system was further rationalised in 1960, resulting in the International System of Units, the are was not included as a recognised unit. The hectare, however, remains as a non-SI unit accepted for use with the SI units, the metric system of measurement was first given a legal basis in 1795 by the French Revolutionary government. At the first meeting of the CGPM in 1889 when a new standard metre, manufactured by Johnson Matthey & Co of London was adopted, in 1960, when the metric system was updated as the International System of Units, the are did not receive international recognition. The units that were catalogued replicated the recommendations of the CGPM, many farmers, especially older ones, still use the acre for everyday calculations, and convert to hectares only for official paperwork. Farm fields can have long histories which are resistant to change, with names such as the six acre field stretching back hundreds of years. The names centiare, deciare, decare and hectare are derived by adding the standard metric prefixes to the base unit of area. The centiare is a synonym for one square metre, the deciare is ten square metres. The are is a unit of area, equal to 100 square metres and it was defined by older forms of the metric system, but is now outside of the modern International System of Units. It is commonly used to measure real estate, in particular in Indonesia, India, and in French-, Portuguese-, Slovakian-, Serbian-, Czech-, Polish-, Dutch-, in Russia and other former Soviet Union states, the are is called sotka. It is used to describe the size of suburban dacha or allotment garden plots or small city parks where the hectare would be too large, the decare is derived from deka, the prefix for 10 and are, and is equal to 10 ares or 1000 square metres. It is used in Norway and in the former Ottoman areas of the Middle East, the hectare, although not strictly a unit of SI, is the only named unit of area that is accepted for use within the SI. The United Kingdom, United States, Burma, and to some extent Canada instead use the acre, others, such as South Africa, published conversion factors which were to be used particularly when preparing consolidation diagrams by compilation. In many countries, metrication redefined or clarified existing measures in terms of metric units, non-SI units accepted for use with the International System of Units
3.
Area
–
Area is the quantity that expresses the extent of a two-dimensional figure or shape, or planar lamina, in the plane. Surface area is its analog on the surface of a three-dimensional object. It is the analog of the length of a curve or the volume of a solid. The area of a shape can be measured by comparing the shape to squares of a fixed size, in the International System of Units, the standard unit of area is the square metre, which is the area of a square whose sides are one metre long. A shape with an area of three square metres would have the area as three such squares. In mathematics, the square is defined to have area one. There are several formulas for the areas of simple shapes such as triangles, rectangles. Using these formulas, the area of any polygon can be found by dividing the polygon into triangles, for shapes with curved boundary, calculus is usually required to compute the area. Indeed, the problem of determining the area of plane figures was a motivation for the historical development of calculus. For a solid such as a sphere, cone, or cylinder. Formulas for the areas of simple shapes were computed by the ancient Greeks. Area plays an important role in modern mathematics, in addition to its obvious importance in geometry and calculus, area is related to the definition of determinants in linear algebra, and is a basic property of surfaces in differential geometry. In analysis, the area of a subset of the plane is defined using Lebesgue measure, in general, area in higher mathematics is seen as a special case of volume for two-dimensional regions. Area can be defined through the use of axioms, defining it as a function of a collection of certain plane figures to the set of real numbers and it can be proved that such a function exists. An approach to defining what is meant by area is through axioms, area can be defined as a function from a collection M of special kind of plane figures to the set of real numbers which satisfies the following properties, For all S in M, a ≥0. If S and T are in M then so are S ∪ T and S ∩ T, if S and T are in M with S ⊆ T then T − S is in M and a = a − a. If a set S is in M and S is congruent to T then T is also in M, every rectangle R is in M. If the rectangle has length h and breadth k then a = hk, let Q be a set enclosed between two step regions S and T
4.
Orders of magnitude (length)
–
The following are examples of orders of magnitude for different lengths. To help compare different orders of magnitude, the following list describes various lengths between 1. 6×10−35 meters and 101010122 meters,100 pm –1 Ångström 120 pm – radius of a gold atom 150 pm – Length of a typical covalent bond. 280 pm – Average size of the water molecule 298 pm – radius of a caesium atom, light travels 1 metre in 1⁄299,792,458, or 3. 3356409519815E-9 of a second. 25 metres – wavelength of the broadcast radio shortwave band at 12 MHz 29 metres – height of the lighthouse at Savudrija, Slovenia. 31 metres – wavelength of the broadcast radio shortwave band at 9.7 MHz 34 metres – height of the Split Point Lighthouse in Aireys Inlet, Victoria, Australia. 1 kilometre is equal to,1,000 metres 0.621371 miles 1,093.61 yards 3,280.84 feet 39,370.1 inches 100,000 centimetres 1,000,000 millimetres Side of a square of area 1 km2. Radius of a circle of area π km2,1.637 km – deepest dive of Lake Baikal in Russia, the worlds largest fresh water lake. 2.228 km – height of Mount Kosciuszko, highest point in Australia Most of Manhattan is from 3 to 4 km wide, farsang, a modern unit of measure commonly used in Iran and Turkey. Usage of farsang before 1926 may be for a precise unit derived from parasang. It is the altitude at which the FAI defines spaceflight to begin, to help compare orders of magnitude, this page lists lengths between 100 and 1,000 kilometres. 7.9 Gm – Diameter of Gamma Orionis 9, the newly improved measurement was 30% lower than the previous 2007 estimate. The size was revised in 2012 through improved measurement techniques and its faintness gives us an idea how our Sun would appear when viewed from even so close a distance as this. 350 Pm –37 light years – Distance to Arcturus 373.1 Pm –39.44 light years - Distance to TRAPPIST-1, a star recently discovered to have 7 planets around it. 400 Pm –42 light years – Distance to Capella 620 Pm –65 light years – Distance to Aldebaran This list includes distances between 1 and 10 exametres. 13 Em –1,300 light years – Distance to the Orion Nebula 14 Em –1,500 light years – Approximate thickness of the plane of the Milky Way galaxy at the Suns location 30.8568 Em –3,261. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. At this scale, expansion of the universe becomes significant, Distance of these objects are derived from their measured redshifts, which depends on the cosmological models used. 590 Ym –62 billion light years – Cosmological event horizon, displays orders of magnitude in successively larger rooms Powers of Ten Travel across the Universe
5.
Thomson scattering
–
Thomson scattering is the elastic scattering of electromagnetic radiation by a free charged particle, as described by classical electromagnetism. It is just the low-energy limit of Compton scattering, the kinetic energy. Thomson scattering is an important phenomenon in plasma physics and was first explained by the physicist J. J. Thomson. As long as the motion of the particle is non-relativistic, the cause of the acceleration of the particle will be due to the electric field component of the incident wave. In a first approximation, the influence of the field can be neglected. The particle will move in the direction of the electric field. The moving particle radiates most strongly in a perpendicular to its acceleration. Therefore, depending on where an observer is located, the light scattered from a volume element may appear to be more or less polarized. The electric fields of the incoming and observed wave can be divided up into those components lying in the plane of observation and those components lying in the plane are referred to as radial and those perpendicular to the plane are tangential. The diagram on the right depicts the plane of observation and it shows the radial component of the incident electric field, which causes the charged particles at the scattering point to exhibit a radial component of acceleration. It can be shown that the amplitude of the wave will be proportional to the cosine of χ. The intensity, which is the square of the amplitude, will then be diminished by a factor of cos2 and it can be seen that the tangential components will not be affected in this way. From the point of view of an observer, there are two emission coefficients, εr corresponding to radially polarized light and εt corresponding to tangentially polarized light, integrating over the solid angle, we obtain the Thomson cross section σ t =8 π32 in SI units. The solar K-corona is the result of the Thomson scattering of radiation from solar coronal electrons. NASAs STEREO mission generates three-dimensional images of the density around the sun by measuring this K-corona from two separate satellites. Inverse-Compton scattering can be viewed as Thomson scattering in the rest frame of the relativistic particle, x-ray crystallography is based on Thomson scattering. Compton scattering Kapitsa–Dirac effect Klein–Nishina formula Billings, Donald E, a guide to the solar corona. Johnson W. R, Nielsen J. Cheng K. T, Thomson scattering in the average-atom approximation