1.
Jmol
–
Jmol is computer software for molecular modelling chemical structures in 3-dimensions. Jmol returns a 3D representation of a molecule that may be used as a teaching tool and it is written in the programming language Java, so it can run on the operating systems Windows, macOS, Linux, and Unix, if Java is installed. It is free and open-source software released under a GNU Lesser General Public License version 2.0, a standalone application and a software development kit exist that can be integrated into other Java applications, such as Bioclipse and Taverna. A popular feature is an applet that can be integrated into web pages to display molecules in a variety of ways, for example, molecules can be displayed as ball-and-stick models, space-filling models, ribbon diagrams, etc. Jmol supports a range of chemical file formats, including Protein Data Bank, Crystallographic Information File, MDL Molfile. There is also a JavaScript-only version, JSmol, that can be used on computers with no Java, the Jmol applet, among other abilities, offers an alternative to the Chime plug-in, which is no longer under active development. While Jmol has many features that Chime lacks, it does not claim to reproduce all Chime functions, most notably, Chime requires plug-in installation and Internet Explorer 6.0 or Firefox 2.0 on Microsoft Windows, or Netscape Communicator 4.8 on Mac OS9. Jmol requires Java installation and operates on a variety of platforms. For example, Jmol is fully functional in Mozilla Firefox, Internet Explorer, Opera, Google Chrome, fast and Scriptable Molecular Graphics in Web Browsers without Java3D
2.
ChemSpider
–
ChemSpider is a database of chemicals. ChemSpider is owned by the Royal Society of Chemistry, the database contains information on more than 50 million molecules from over 500 data sources including, Each chemical is given a unique identifier, which forms part of a corresponding URL. This is an approach to develop an online chemistry database. The search can be used to widen or restrict already found results, structure searching on mobile devices can be done using free apps for iOS and for the Android. The ChemSpider database has been used in combination with text mining as the basis of document markup. The result is a system between chemistry documents and information look-up via ChemSpider into over 150 data sources. ChemSpider was acquired by the Royal Society of Chemistry in May,2009, prior to the acquisition by RSC, ChemSpider was controlled by a private corporation, ChemZoo Inc. The system was first launched in March 2007 in a release form. ChemSpider has expanded the generic support of a database to include support of the Wikipedia chemical structure collection via their WiChempedia implementation. A number of services are available online. SyntheticPages is an interactive database of synthetic chemistry procedures operated by the Royal Society of Chemistry. Users submit synthetic procedures which they have conducted themselves for publication on the site and these procedures may be original works, but they are more often based on literature reactions. Citations to the published procedure are made where appropriate. They are checked by an editor before posting. The pages do not undergo formal peer-review like a journal article. The comments are moderated by scientific editors. The intention is to collect practical experience of how to conduct useful chemical synthesis in the lab, while experimental methods published in an ordinary academic journal are listed formally and concisely, the procedures in ChemSpider SyntheticPages are given with more practical detail. Comments by submitters are included as well, other publications with comparable amounts of detail include Organic Syntheses and Inorganic Syntheses
3.
European Chemicals Agency
–
ECHA is the driving force among regulatory authorities in implementing the EUs chemicals legislation. ECHA helps companies to comply with the legislation, advances the safe use of chemicals, provides information on chemicals and it is located in Helsinki, Finland. The Agency, headed by Executive Director Geert Dancet, started working on 1 June 2007, the REACH Regulation requires companies to provide information on the hazards, risks and safe use of chemical substances that they manufacture or import. Companies register this information with ECHA and it is freely available on their website. So far, thousands of the most hazardous and the most commonly used substances have been registered, the information is technical but gives detail on the impact of each chemical on people and the environment. This also gives European consumers the right to ask whether the goods they buy contain dangerous substances. The Classification, Labelling and Packaging Regulation introduces a globally harmonised system for classifying and labelling chemicals into the EU. This worldwide system makes it easier for workers and consumers to know the effects of chemicals, companies need to notify ECHA of the classification and labelling of their chemicals. So far, ECHA has received over 5 million notifications for more than 100000 substances, the information is freely available on their website. Consumers can check chemicals in the products they use, Biocidal products include, for example, insect repellents and disinfectants used in hospitals. The Biocidal Products Regulation ensures that there is information about these products so that consumers can use them safely. ECHA is responsible for implementing the regulation, the law on Prior Informed Consent sets guidelines for the export and import of hazardous chemicals. Through this mechanism, countries due to hazardous chemicals are informed in advance and have the possibility of rejecting their import. Substances that may have effects on human health and the environment are identified as Substances of Very High Concern 1. These are mainly substances which cause cancer, mutation or are toxic to reproduction as well as substances which persist in the body or the environment, other substances considered as SVHCs include, for example, endocrine disrupting chemicals. Companies manufacturing or importing articles containing these substances in a concentration above 0 and they are required to inform users about the presence of the substance and therefore how to use it safely. Consumers have the right to ask the retailer whether these substances are present in the products they buy, once a substance has been officially identified in the EU as being of very high concern, it will be added to a list. This list is available on ECHA’s website and shows consumers and industry which chemicals are identified as SVHCs, Substances placed on the Candidate List can then move to another list
4.
PubChem
–
PubChem is a database of chemical molecules and their activities against biological assays. The system is maintained by the National Center for Biotechnology Information, a component of the National Library of Medicine, PubChem can be accessed for free through a web user interface. Millions of compound structures and descriptive datasets can be downloaded via FTP. PubChem contains substance descriptions and small molecules with fewer than 1000 atoms and 1000 bonds, more than 80 database vendors contribute to the growing PubChem database. PubChem consists of three dynamically growing primary databases, as of 28 January 2016, Compounds,82.6 million entries, contains pure and characterized chemical compounds. Substances,198 million entries, contains also mixtures, extracts, complexes, bioAssay, bioactivity results from 1.1 million high-throughput screening programs with several million values. PubChem contains its own online molecule editor with SMILES/SMARTS and InChI support that allows the import and export of all common chemical file formats to search for structures and fragments. In the text search form the database fields can be searched by adding the name in square brackets to the search term. A numeric range is represented by two separated by a colon. The search terms and field names are case-insensitive, parentheses and the logical operators AND, OR, and NOT can be used. AND is assumed if no operator is used, example,0,5000,50,10 -5,5 PubChem was released in 2004. The American Chemical Society has raised concerns about the publicly supported PubChem database and they have a strong interest in the issue since the Chemical Abstracts Service generates a large percentage of the societys revenue. To advocate their position against the PubChem database, ACS has actively lobbied the US Congress, soon after PubChems creation, the American Chemical Society lobbied U. S. Congress to restrict the operation of PubChem, which they asserted competes with their Chemical Abstracts Service
5.
International Chemical Identifier
–
Initially developed by IUPAC and NIST from 2000 to 2005, the format and algorithms are non-proprietary. The continuing development of the standard has supported since 2010 by the not-for-profit InChI Trust. The current version is 1.04 and was released in September 2011, prior to 1.04, the software was freely available under the open source LGPL license, but it now uses a custom license called IUPAC-InChI Trust License. Not all layers have to be provided, for instance, the layer can be omitted if that type of information is not relevant to the particular application. InChIs can thus be seen as akin to a general and extremely formalized version of IUPAC names and they can express more information than the simpler SMILES notation and differ in that every structure has a unique InChI string, which is important in database applications. Information about the 3-dimensional coordinates of atoms is not represented in InChI, the InChI algorithm converts input structural information into a unique InChI identifier in a three-step process, normalization, canonicalization, and serialization. The InChIKey, sometimes referred to as a hashed InChI, is a fixed length condensed digital representation of the InChI that is not human-understandable. The InChIKey specification was released in September 2007 in order to facilitate web searches for chemical compounds and it should be noted that, unlike the InChI, the InChIKey is not unique, though collisions can be calculated to be very rare, they happen. In January 2009 the final 1.02 version of the InChI software was released and this provided a means to generate so called standard InChI, which does not allow for user selectable options in dealing with the stereochemistry and tautomeric layers of the InChI string. The standard InChIKey is then the hashed version of the standard InChI string, the standard InChI will simplify comparison of InChI strings and keys generated by different groups, and subsequently accessed via diverse sources such as databases and web resources. Every InChI starts with the string InChI= followed by the version number and this is followed by the letter S for standard InChIs. The remaining information is structured as a sequence of layers and sub-layers, the layers and sub-layers are separated by the delimiter / and start with a characteristic prefix letter. The six layers with important sublayers are, Main layer Chemical formula and this is the only sublayer that must occur in every InChI. The atoms in the formula are numbered in sequence, this sublayer describes which atoms are connected by bonds to which other ones. Describes how many hydrogen atoms are connected to each of the other atoms, the condensed,27 character standard InChIKey is a hashed version of the full standard InChI, designed to allow for easy web searches of chemical compounds. Most chemical structures on the Web up to 2007 have been represented as GIF files, the full InChI turned out to be too lengthy for easy searching, and therefore the InChIKey was developed. With all databases currently having below 50 million structures, such duplication appears unlikely at present, a recent study more extensively studies the collision rate finding that the experimental collision rate is in agreement with the theoretical expectations. Example, Morphine has the structure shown on the right, as the InChI cannot be reconstructed from the InChIKey, an InChIKey always needs to be linked to the original InChI to get back to the original structure
6.
Simplified molecular-input line-entry system
–
The simplified molecular-input line-entry system is a specification in form of a line notation for describing the structure of chemical species using short ASCII strings. SMILES strings can be imported by most molecule editors for conversion back into two-dimensional drawings or three-dimensional models of the molecules, the original SMILES specification was initiated in the 1980s. It has since modified and extended. In 2007, a standard called OpenSMILES was developed in the open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, the original SMILES specification was initiated by David Weininger at the USEPA Mid-Continent Ecology Division Laboratory in Duluth in the 1980s. The Environmental Protection Agency funded the project to develop SMILES. It has since modified and extended by others, most notably by Daylight Chemical Information Systems. In 2007, a standard called OpenSMILES was developed by the Blue Obelisk open-source chemistry community. Other linear notations include the Wiswesser Line Notation, ROSDAL and SLN, in July 2006, the IUPAC introduced the InChI as a standard for formula representation. SMILES is generally considered to have the advantage of being slightly more human-readable than InChI, the term SMILES refers to a line notation for encoding molecular structures and specific instances should strictly be called SMILES strings. However, the term SMILES is also used to refer to both a single SMILES string and a number of SMILES strings, the exact meaning is usually apparent from the context. The terms canonical and isomeric can lead to confusion when applied to SMILES. The terms describe different attributes of SMILES strings and are not mutually exclusive, typically, a number of equally valid SMILES strings can be written for a molecule. For example, CCO, OCC and CC all specify the structure of ethanol, algorithms have been developed to generate the same SMILES string for a given molecule, of the many possible strings, these algorithms choose only one of them. This SMILES is unique for each structure, although dependent on the algorithm used to generate it. These algorithms first convert the SMILES to a representation of the molecular structure. A common application of canonical SMILES is indexing and ensuring uniqueness of molecules in a database, there is currently no systematic comparison across commercial software to test if such flaws exist in those packages. SMILES notation allows the specification of configuration at tetrahedral centers, and these are structural features that cannot be specified by connectivity alone and SMILES which encode this information are termed isomeric SMILES
7.
Chemical formula
–
These are limited to a single typographic line of symbols, which may include subscripts and superscripts. A chemical formula is not a name, and it contains no words. Although a chemical formula may imply certain simple chemical structures, it is not the same as a full chemical structural formula. Chemical formulas can fully specify the structure of only the simplest of molecules and chemical substances, the simplest types of chemical formulas are called empirical formulas, which use letters and numbers indicating the numerical proportions of atoms of each type. Molecular formulas indicate the numbers of each type of atom in a molecule. For example, the formula for glucose is CH2O, while its molecular formula is C6H12O6. This is possible if the relevant bonding is easy to show in one dimension, an example is the condensed molecular/chemical formula for ethanol, which is CH3-CH2-OH or CH3CH2OH. For reasons of structural complexity, there is no condensed chemical formula that specifies glucose, chemical formulas may be used in chemical equations to describe chemical reactions and other chemical transformations, such as the dissolving of ionic compounds into solution. A chemical formula identifies each constituent element by its chemical symbol, in empirical formulas, these proportions begin with a key element and then assign numbers of atoms of the other elements in the compound, as ratios to the key element. For molecular compounds, these numbers can all be expressed as whole numbers. For example, the formula of ethanol may be written C2H6O because the molecules of ethanol all contain two carbon atoms, six hydrogen atoms, and one oxygen atom. Some types of compounds, however, cannot be written with entirely whole-number empirical formulas. An example is boron carbide, whose formula of CBn is a variable non-whole number ratio with n ranging from over 4 to more than 6.5. When the chemical compound of the consists of simple molecules. These types of formulas are known as molecular formulas and condensed formulas. A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the formula for glucose is C6H12O6 rather than the glucose empirical formula. However, except for very simple substances, molecular chemical formulas lack needed structural information, for simple molecules, a condensed formula is a type of chemical formula that may fully imply a correct structural formula. For example, ethanol may be represented by the chemical formula CH3CH2OH
8.
Density
–
The density, or more precisely, the volumetric mass density, of a substance is its mass per unit volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume, ρ = m V, where ρ is the density, m is the mass, and V is the volume. In some cases, density is defined as its weight per unit volume. For a pure substance the density has the numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity, osmium and iridium are the densest known elements at standard conditions for temperature and pressure but certain chemical compounds may be denser. Thus a relative density less than one means that the floats in water. The density of a material varies with temperature and pressure and this variation is typically small for solids and liquids but much greater for gases. Increasing the pressure on an object decreases the volume of the object, increasing the temperature of a substance decreases its density by increasing its volume. In most materials, heating the bottom of a results in convection of the heat from the bottom to the top. This causes it to rise relative to more dense unheated material, the reciprocal of the density of a substance is occasionally called its specific volume, a term sometimes used in thermodynamics. Density is a property in that increasing the amount of a substance does not increase its density. Archimedes knew that the irregularly shaped wreath could be crushed into a cube whose volume could be calculated easily and compared with the mass, upon this discovery, he leapt from his bath and ran naked through the streets shouting, Eureka. As a result, the term eureka entered common parlance and is used today to indicate a moment of enlightenment, the story first appeared in written form in Vitruvius books of architecture, two centuries after it supposedly took place. Some scholars have doubted the accuracy of this tale, saying among other things that the method would have required precise measurements that would have been difficult to make at the time, from the equation for density, mass density has units of mass divided by volume. As there are units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per metre and the cgs unit of gram per cubic centimetre are probably the most commonly used units for density.1,000 kg/m3 equals 1 g/cm3. In industry, other larger or smaller units of mass and or volume are often more practical, see below for a list of some of the most common units of density
9.
Boiling point
–
The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the environmental pressure. A liquid in a vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a boiling point than when that liquid is at atmospheric pressure. For a given pressure, different liquids boil at different temperatures, for example, water boils at 100 °C at sea level, but at 93.4 °C at 2,000 metres altitude. The normal boiling point of a liquid is the case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level,1 atmosphere. At that temperature, the pressure of the liquid becomes sufficient to overcome atmospheric pressure. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar, the heat of vaporization is the energy required to transform a given quantity of a substance from a liquid into a gas at a given pressure. Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation, evaporation is a surface phenomenon in which molecules located near the liquids edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, a saturated liquid contains as much thermal energy as it can without boiling. The saturation temperature is the temperature for a corresponding saturation pressure at which a liquid boils into its vapor phase, the liquid can be said to be saturated with thermal energy. Any addition of energy results in a phase transition. If the pressure in a system remains constant, a vapor at saturation temperature will begin to condense into its liquid phase as thermal energy is removed, similarly, a liquid at saturation temperature and pressure will boil into its vapor phase as additional thermal energy is applied. The boiling point corresponds to the temperature at which the pressure of the liquid equals the surrounding environmental pressure. Thus, the point is dependent on the pressure. Boiling points may be published with respect to the NIST, USA standard pressure of 101.325 kPa, at higher elevations, where the atmospheric pressure is much lower, the boiling point is also lower. The boiling point increases with increased pressure up to the critical point, the boiling point cannot be increased beyond the critical point. Likewise, the point decreases with decreasing pressure until the triple point is reached
10.
Flash point
–
The flash point is the lowest temperature at which vapours of a volatile material will ignite, when given an ignition source. The flash point may sometimes be confused with the autoignition temperature, the fire point is the lowest temperature at which the vapor will keep burning after being ignited and the ignition source removed. The fire point is higher than the point, because at the flash point the vapor may be reliably expected to cease burning when the ignition source is removed. The flash point is a characteristic that is used to distinguish between flammable liquids, such as petrol, and combustible liquids, such as diesel. It is also used to characterize the fire hazards of liquids, all liquids have a specific vapor pressure, which is a function of that liquids temperature and is subject to Boyles Law. As temperature increases, vapor pressure increases, as vapor pressure increases, the concentration of vapor of a flammable or combustible liquid in the air increases. Hence, temperature determines the concentration of vapor of the liquid in the air. The flash point is the lowest temperature at which there will be enough flammable vapor to induce ignition when a source is applied. There are two types of flash point measurement, open cup and closed cup. In open cup devices, the sample is contained in a cup which is heated and, at intervals. The measured flash point will vary with the height of the flame above the liquid surface and, at sufficient height. The best-known example is the Cleveland open cup, in both these types, the cups are sealed with a lid through which the ignition source can be introduced. Closed cup testers normally give lower values for the point than open cup and are a better approximation to the temperature at which the vapour pressure reaches the lower flammable limit. The flash point is an empirical measurement rather than a physical parameter. The measured value will vary with equipment and test protocol variations, including temperature ramp rate, time allowed for the sample to equilibrate, sample volume, methods for determining the flash point of a liquid are specified in many standards. For example, testing by the Pensky-Martens closed cup method is detailed in ASTM D93, IP34, ISO2719, DIN51758, JIS K2265 and AFNOR M07-019. Determination of flash point by the Small Scale closed cup method is detailed in ASTM D3828 and D3278, EN ISO3679 and 3680, cEN/TR15138 Guide to Flash Point Testing and ISO TR29662 Guidance for Flash Point Testing cover the key aspects of flash point testing. Gasoline is a used in a spark-ignition engine
11.
Heterocyclic compound
–
A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring. Heterocyclic chemistry is the branch of chemistry dealing with the synthesis, properties. Examples of heterocyclic compounds include all of the acids, the majority of drugs, most biomass. Although heterocyclic compounds may be inorganic, most contain at least one carbon, while atoms that are neither carbon nor hydrogen are normally referred to in organic chemistry as heteroatoms, this is usually in comparison to the all-carbon backbone. But this does not prevent a compound such as borazine from being labelled heterocyclic, IUPAC recommends the Hantzsch-Widman nomenclature for naming heterocyclic compounds. Heterocyclic compounds can be classified based on their electronic structure. The saturated heterocycles behave like the acyclic derivatives, thus, piperidine and tetrahydrofuran are conventional amines and ethers, with modified steric profiles. Therefore, the study of heterocyclic chemistry focuses especially on unsaturated derivatives, included are pyridine, thiophene, pyrrole, and furan. Another large class of heterocycles are fused to rings, which for pyridine, thiophene, pyrrole, and furan are quinoline, benzothiophene, indole. Fusion of two benzene rings gives rise to a large family of compounds, respectively the acridine, dibenzothiophene, carbazole. The unsaturated rings can be classified according to the participation of the heteroatom in the pi system, heterocycles with three atoms in the ring are more reactive because of ring strain. Those containing one heteroatom are, in general, stable and those with two heteroatoms are more likely to occur as reactive intermediates. Five-membered rings with one heteroatom, The 5-membered ring compounds containing two heteroatoms, at least one of which is nitrogen, are called the azoles. Thiazoles and isothiazoles contain a sulfur and an atom in the ring. A large group of 5-membered ring compounds with three heteroatoms also exists, one example is dithiazoles that contain two sulfur and a nitrogen atom. Five-member ring compounds with four heteroatoms, With 5-heteroatoms, the compound may be considered rather than heterocyclic. With 7-membered rings, the heteroatom must be able to provide an empty pi orbital for normal aromatic stabilization to be available, otherwise, for example, with the benzo-fused unsaturated nitrogen heterocycles, pyrrole provides indole or isoindole depending on the orientation. The pyridine analog is quinoline or isoquinoline, for azepine, benzazepine is the preferred name
12.
Organic compound
–
An organic compound is virtually any chemical compound that contains carbon, although a consensus definition remains elusive and likely arbitrary. Organic compounds are rare terrestrially, but of importance because all known life is based on organic compounds. The most basic petrochemicals are considered the building blocks of organic chemistry, for historical reasons discussed below, a few types of carbon-containing compounds, such as carbides, carbonates, simple oxides of carbon, and cyanides are considered inorganic. The distinction between organic and inorganic compounds, while useful in organizing the vast subject of chemistry. Organic chemistry is the science concerned with all aspects of organic compounds, Organic synthesis is the methodology of their preparation. The word organic is historical, dating to the 1st century, for many centuries, Western alchemists believed in vitalism. This is the theory that certain compounds could be synthesized only from their classical elements—earth, water, air, vitalism taught that these organic compounds were fundamentally different from the inorganic compounds that could be obtained from the elements by chemical manipulation. Vitalism survived for a while even after the rise of modern atomic theory and it first came under question in 1824, when Friedrich Wöhler synthesized oxalic acid, a compound known to occur only in living organisms, from cyanogen. A more decisive experiment was Wöhlers 1828 synthesis of urea from the inorganic salts potassium cyanate, urea had long been considered an organic compound, as it was known to occur only in the urine of living organisms. Wöhlers experiments were followed by others, in which increasingly complex organic substances were produced from inorganic ones without the involvement of any living organism. Even though vitalism has been discredited, scientific nomenclature retains the distinction between organic and inorganic compounds, still, even the broadest definition requires excluding alloys that contain carbon, including steel. The C-H definition excludes compounds that are considered organic, neither urea nor oxalic acid is organic by this definition, yet they were two key compounds in the vitalism debate. The IUPAC Blue Book on organic nomenclature specifically mentions urea and oxalic acid, other compounds lacking C-H bonds but traditionally considered organic include benzenehexol, mesoxalic acid, and carbon tetrachloride. Mellitic acid, which contains no C-H bonds, is considered an organic substance in Martian soil. The C-H bond-only rule also leads to somewhat arbitrary divisions in sets of carbon-fluorine compounds, for example, CF4 would be considered by this rule to be inorganic, whereas CF3H would be organic. Organic compounds may be classified in a variety of ways, one major distinction is between natural and synthetic compounds. Another distinction, based on the size of organic compounds, distinguishes between small molecules and polymers, natural compounds refer to those that are produced by plants or animals. Many of these are extracted from natural sources because they would be more expensive to produce artificially
13.
Oxygen
–
Oxygen is a chemical element with symbol O and atomic number 8. It is a member of the group on the periodic table and is a highly reactive nonmetal. By mass, oxygen is the third-most abundant element in the universe, after hydrogen, at standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. This is an important part of the atmosphere and diatomic oxygen gas constitutes 20. 8% of the Earths atmosphere, additionally, as oxides the element makes up almost half of the Earths crust. Most of the mass of living organisms is oxygen as a component of water, conversely, oxygen is continuously replenished by photosynthesis, which uses the energy of sunlight to produce oxygen from water and carbon dioxide. Oxygen is too reactive to remain a free element in air without being continuously replenished by the photosynthetic action of living organisms. Another form of oxygen, ozone, strongly absorbs ultraviolet UVB radiation, but ozone is a pollutant near the surface where it is a by-product of smog. At low earth orbit altitudes, sufficient atomic oxygen is present to cause corrosion of spacecraft, the name oxygen was coined in 1777 by Antoine Lavoisier, whose experiments with oxygen helped to discredit the then-popular phlogiston theory of combustion and corrosion. One of the first known experiments on the relationship between combustion and air was conducted by the 2nd century BCE Greek writer on mechanics, Philo of Byzantium. In his work Pneumatica, Philo observed that inverting a vessel over a burning candle, Philo incorrectly surmised that parts of the air in the vessel were converted into the classical element fire and thus were able to escape through pores in the glass. Many centuries later Leonardo da Vinci built on Philos work by observing that a portion of air is consumed during combustion and respiration, Oxygen was discovered by the Polish alchemist Sendivogius, who considered it the philosophers stone. In the late 17th century, Robert Boyle proved that air is necessary for combustion, English chemist John Mayow refined this work by showing that fire requires only a part of air that he called spiritus nitroaereus. From this he surmised that nitroaereus is consumed in both respiration and combustion, Mayow observed that antimony increased in weight when heated, and inferred that the nitroaereus must have combined with it. Accounts of these and other experiments and ideas were published in 1668 in his work Tractatus duo in the tract De respiratione. Robert Hooke, Ole Borch, Mikhail Lomonosov, and Pierre Bayen all produced oxygen in experiments in the 17th and the 18th century but none of them recognized it as a chemical element. This may have been in part due to the prevalence of the philosophy of combustion and corrosion called the phlogiston theory, which was then the favored explanation of those processes. Established in 1667 by the German alchemist J. J. Becher, one part, called phlogiston, was given off when the substance containing it was burned, while the dephlogisticated part was thought to be its true form, or calx. The fact that a substance like wood gains overall weight in burning was hidden by the buoyancy of the combustion products
14.
Potassium hydroxide
–
Potassium hydroxide is an inorganic compound with the formula KOH, and is commonly called caustic potash. Along with sodium hydroxide, this solid is a prototypical strong base. It has many industrial and niche applications, most of which exploit its corrosive nature, an estimated 700,000 to 800,000 tonnes were produced in 2005. Approximately 100 times more NaOH than KOH is produced annually, KOH is noteworthy as the precursor to most soft and liquid soaps as well as numerous potassium-containing chemicals. Potassium hydroxide can be found in form by reacting sodium hydroxide with impure potassium. It is usually sold as translucent pellets, which will become tacky in air because KOH is hygroscopic, consequently, KOH typically contains varying amounts of water. Its dissolution in water is strongly exothermic, concentrated aqueous solutions are sometimes called potassium lyes. Even at high temperatures, solid KOH does not dehydrate readily, potassium hydroxide solutions with concentrations of approximately 0.5 to 2. 0% are irritating when coming into contact with the skin, while concentrations higher than 2% are corrosive. At higher temperatures, solid KOH crystallizes in the NaCl crystal structure, the OH group is either rapidly or randomly disordered so that the OH− group is effectively a spherical anion of radius 1.53 Å. At room temperature, the OH− groups are ordered and the environment about the K+ centers is distorted, with K+—OH− distances ranging from 2.69 to 3.15 Å, depending on the orientation of the OH group. KOH forms a series of crystalline hydrates, namely the monohydrate KOH·H 2O, the dihydrate KOH·2 H 2O, approximately 121 g of KOH will dissolve in 100 mL of water at room temperature compared with 100 g of NaOH in the same volume. Lower molecular weight alcohols such as methanol, ethanol, and propanols are also excellent solvents, because of its high affinity for water, KOH serves as a desiccant in the laboratory. It is often used to dry basic solvents, especially amines and pyridines, like NaOH, KOH exhibits high thermal stability. Because of its stability and relatively low melting point, it is often melt-cast as pellets or rods, forms that have low surface area. KOH is highly basic, forming strongly alkaline solutions in water and other polar solvents and these solutions are capable of deprotonating many acids, even weak ones. In analytical chemistry, titrations using solutions of KOH are used to assay acids, KOH, like NaOH, serves as a source of OH−, a highly nucleophilic anion that attacks polar bonds in both inorganic and organic materials. In perhaps its most well-known reaction, aqueous KOH saponifies esters, KOH + RCO2R → RCO2K + ROH When R is a long chain and this reaction is manifested by the greasy feel that KOH gives when touched — fats on the skin are rapidly converted to soap and glycerol. Molten KOH is used to displace halides and other leaving groups, the reaction is especially useful for aromatic reagents to give the corresponding phenols
15.
Decarboxylation
–
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide. Usually, decarboxylation refers to a reaction of acids, removing a carbon atom from a carbon chain. The reverse process, which is the first chemical step in photosynthesis, is called carboxylation, enzymes that catalyze decarboxylations are called decarboxylases or, the more formal term, carboxy-lyases. The term decarboxylation literally means removal of the COOH and its replacement with a hydrogen, the term relates the state of the reactant and product. Decarboxylation is one of the oldest organic reactions, since it often entails simple pyrolysis, heating is required because the reaction is less favorable at low temperatures. Yields are highly sensitive to conditions, in retrosynthesis, decarboxylation reactions can be considered the opposite of homologation reactions, in that the chain length becomes one carbon shorter. Metals, especially copper compounds, are usually required, such reactions proceed via the intermediacy of metal carboxylate complexes. Decarboxylation of aryl carboxylates can generate the equivalent of the corresponding aryl anion, alkanoic acids and their salts do not always undergo decarboxylation readily. Exceptions are the decarboxylation of beta-keto acids, α, β-unsaturated acids, and α-phenyl, α-nitro, such reactions are accelerated due to the formation of a zwitterionic tautomer in which the carbonyl is protonated and the carboxyl group is deprotonated. Typically fatty acids do not decarboxylate readily, reactivity of an acid towards decarboxylation depends upon stability of carbanion intermediate formed in above mechanism. Many reactions have been named after workers in organic chemistry. The Barton decarboxylation, Kolbe electrolysis, Kochi reaction and Hunsdiecker reaction are radical reactions, the Krapcho decarboxylation is a related decarboxylation of an ester. In ketonic decarboxylation a carboxylic acid is converted to a ketone, hydrodecarboxylations involve the conversion of a carboxylic acid to the corresponding hydrocarbon. This is conceptually the same as the general term decarboxylation as defined above except that it specifically requires that the carboxyl group is. The reaction is common in conjunction with the malonic ester synthesis. The reaction involves the base of the carboxyl group, a carboxylate ion. Where reactions entail heating the carboxylic acid with concentrated hydrochloric acid, in these cases, the reaction is likely to occur by initial addition of water and a proton. Upon heating, Δ9-Tetrahydrocannabinolic acid decarboxylates to give the psychoactive compound Δ9-Tetrahydrocannabinol, when cannabis is heated in vacuum, the decarboxylation of tetrahydrocannabinolic acid appears to follow first order kinetics
16.
Carbonate ester
–
A carbonate ester is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups, the general structure of these carbonates is R1OOR2 and they are related to esters R1OR and ethers R1OR2 and also to the inorganic carbonates. Monomers of polycarbonate are linked by carbonate groups and these polycarbonates are used in eyeglass lenses, compact discs, and bulletproof glass. Small carbonate esters like dimethyl carbonate, and ethylene and propylene carbonate are used as solvents, dimethyl carbonate is a mild methylating agent as well. The chemistry of carbonate esters has been reviewed, carbonate esters can be divided into three categories by their structures. The first and general case is the dialkyl or diaryl carbonate that comprises a group with two R substituents. For example, poly and poly, Alternatively, the groups can be linked by a 2- or 3-carbon bridge, such as ethylene carbonate and trimethylene carbonate, substituents. The most common carbonates have the structure, RO—CO—OR. R is a chain with 8 to 18 carbon atoms, saturated or with one double bond. They are miscible in organic solvents but insoluble in water, unsaturation or branching on the alkyl chain lowers their melting point. The condensation of phosgene with an alcohol appears the most commonly used procedure to synthesize oleochemical carbonates, the polar nature of the carbonate moiety enables it to adhere strongly to metal surfaces. Thus, they are used as lubricant components which have a property for metal corrosion. Some C8 to C18 carbonates have been exploited in personal-care products, extraction of metal ions is improved by the use of the chelating properties of oleochemical carbonates when mixed with the metal-containing aqueous phase. Future developments will ensure a growing interest in these molecules, there are two main industrial ways of preparing carbonate esters, the reaction of an alcohol with phosgene, and the reaction of an alcohol with carbon monoxide and an oxidizer. Other carbonate esters may subsequently be prepared by transesterification, alcohols react with phosgene to yield carbonate esters according to the following reaction,2 ROH + COCl2 → ROCO2R +2 HCl Phenols react similarly. Polycarbonate derived from bisphenol A is produced in this manner, however, toxic phosgene is used, and stoichiometric quantities of base are required to neutralize the hydrogen chloride that is cogenerated. Chloroformate esters are intermediates in this process, annual production of cyclic carbonates was estimated at 100,000 tonnes per year in 2010. Industrially, ethylene and propylene oxides readily react with carbon dioxide to give ethylene and propylene carbonates, for example, C2H4O + CO2 → C2H4O2CO Catalysts for this reaction have been reviewed, as have non-epoxide routes to these cyclic carbonates
17.
Paclitaxel
–
Paclitaxel, sold under the brand name Taxol among others, is a chemotherapy medication used to treat a number of types of cancer. This includes ovarian cancer, breast cancer, lung cancer, Kaposi sarcoma, cervical cancer and it is given by injection into a vein. There is also an albumin bound formulation, common side effects include hair loss, bone marrow suppression, numbness, allergic reactions, muscle pains, and diarrhea. Other serious side effects include heart problems, increased risk of infection, use during pregnancy may result in harm to the baby. Paclitaxel is in the family of medications. It works by interference with the function of microtubules during cell division. Paclitaxel was first isolated in 1971 from the Pacific yew and approved for use in 1993. It is on the World Health Organizations List of Essential Medicines, the wholesale cost in the developing world is about 7.06 to 13.48 USD per 100 mg vial. This amount in the United Kingdom costs the NHS about 66.85 pounds and it is now manufactured by cell culture. Paclitaxel is approved in the UK for ovarian, breast and lung, bladder, prostate, melanoma, esophageal, in September 2006, NICE recommended paclitaxel should not be used in the adjuvant treatment of early node-positive breast cancer. In 2005, its use in the United States for the treatment of breast, pancreatic, albumin-bound paclitaxel is an alternative formulation where paclitaxel is bound to albumin nano-particles. Much of the toxicity of paclitaxel is associated with the solvent Cremophor EL in which it is dissolved for delivery. Abraxis BioScience developed Abraxane, in which paclitaxel is bonded to albumin as a delivery agent to the often toxic solvent delivery method. Synthetic approaches to paclitaxel production led to the development of docetaxel, docetaxel has a similar set of clinical uses to paclitaxel and is marketed under the name of Taxotere. Recently the presence of taxanes including paclitaxel, 10-deacetylbaccatin III, baccatin III, paclitaxel C, the finding of these compounds in shells, which are considered discarded material and are mass-produced by many food industries, is of interest for the future availability of paclitaxel. Paclitaxel drug eluting coated stents for coronary artery placement are sold under the trade name Taxus by Boston Scientific in the United States, Paclitaxel drug eluting coated stents for femoropopliteal artery placement are sold under the trade name Zilver PTX by Cook Medical, Inc. Dexamethasone is given prior to beginning paclitaxel treatment to some of the side effects. Leuprolide, a GnRH analog, has suggested on the basis of studies in mice
18.
Natural product
–
A natural product is a chemical compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life, natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also extended for commercial purposes to refer to cosmetics, dietary supplements. Within the field of chemistry, the definition is often further restricted to secondary metabolites. Secondary metabolites are not essential for survival, but nevertheless provide organisms that produce them an evolutionary advantage, many secondary metabolites are cytotoxic and have been selected and optimized through evolution for use as chemical warfare agents against prey, predators, and competing organisms. Natural products sometimes have pharmacological or biological activity that can be of benefit in treating diseases. As such, natural products are the active components not only of most traditional medicines, in fact, natural products are the inspiration for approximately one half of U. S. Food and Drug Administration-approved drugs. The broadest definition of natural product is anything that is produced by life, and includes the likes of biotic materials, bio-based materials, bodily fluids, a more restrictive definition of a natural product is an organic compound that is synthesized by a living organism. The remainder of this article restricts itself to this more narrow definition, natural products may be classified according to their biological function, biosynthetic pathway, or source as described below. Following Albrecht Kossels original proposal in 1891, natural products are divided into two major classes, the primary and secondary metabolites. Primary metabolites have a function that is essential to the survival of the organism that produces them. Secondary metabolites in contrast have a function that mainly affects other organisms. Secondary metabolites are not essential to survival but do increase the competitiveness of the organism within its environment, because of their ability to modulate biochemical and signal transduction pathways, some secondary metabolites have useful medicinal properties. Natural products especially within the field of chemistry are often defined as primary and secondary metabolites. A more restrictive definition limiting natural products to secondary metabolites is commonly used within the fields of medicinal chemistry, primary metabolites as defined by Kossel are components of basic metabolic pathways that are required for life. They are associated with cellular functions such as nutrient assimilation, energy production. They have a species distribution that span many phyla and frequently more than one kingdom. Primary metabolites include carbohydrates, lipids, amino acids, and nucleic acids which are the building blocks of life
19.
Beta-Propiolactone
–
β-Propiolactone is an organic compound of the lactone family, with a four-membered ring. It is a clear, colorless liquid with a sweet odor, highly soluble in water and miscible with ethanol, acetone, diethyl ether. The word propiolactone usually refers to compound, although it may also refer to α-propiolactone. β-Propiolactone is reasonably anticipated to be a human carcinogen and it was once widely used in the manufacture of acrylic acid and its esters, but its use has been mostly phased out in favor of safer and less expensive alternatives. β-Propiolactone is a sterilizing and sporicidal agent, and has used to sterilize blood plasma, vaccines, tissue grafts, surgical instruments. The principal current use of propiolactone is an intermediate in the synthesis of chemical compounds. β-Propiolactone will slowly react with water and hydrolyze to produce 3-hydroxypropionic acid, variovorax paradoxus, Sphingomonas paucimobilis, Rhizopus delemar and thermophilic Streptomyces sp. can degrade β-propiolactone. 3-Oxetanone, an isomer of β-propiolactone Malonic anhydride α-Propiolactone
20.
3-Oxetanone
–
3-Oxetanone, also called oxetan-3-one or 1, 3-epoxy-2-propanone, is a chemical compound with formula C3H4O2. It is the ketone of oxetane, and an isomer of β-propiolactone, 3-Oxetanone is a liquid at room temperature, that boils at 140 °C. It is a specialty chemical, used for research in the synthesis of other oxetanes of pharmacological interest, oxetan-3-one also has been the object of theoretical studies
21.
Royal Society of Chemistry
–
The Royal Society of Chemistry is a learned society in the United Kingdom with the goal of advancing the chemical sciences. At its inception, the Society had a membership of 34,000 in the UK. The headquarters of the Society are at Burlington House, Piccadilly and it also has offices in Thomas Graham House in Cambridge where RSC Publishing is based. The Society has offices in the United States at the University City Science Center, Philadelphia, the organisation carries out research, publishes journals, books and databases, as well as hosting conferences, seminars and workshops. The designation FRSC is given to a group of elected Fellows of the society who have made contributions to chemistry. The names of Fellows are published each year in The Times, Honorary Fellowship of the Society is awarded for distinguished service in the field of chemistry. The rim of the wheel is gold, and the spokes are of non-tarnishable metals. The current president is Sir John Holman, AMRSC, Associate Member, Royal Society of Chemistry The entry level for RSC membership, AMRSC is awarded to graduates in the chemical sciences. HonFRSC, Honorary Fellow of the Society Honorary Fellowship is awarded for distinguished service in the field of chemistry, CChem, Chartered Chemist The award of CChem is considered separately from admission to a category of RSC membership. Candidates need to be MRSC or FRSC and demonstrate development of specific attributes and be in a job which requires their chemical knowledge. CSci, Chartered Scientist The RSC is a licensed by the Science Council for the registration of Chartered Scientists, eurChem, European Chemist The RSC is a member of the European Communities Chemistry Council, and can award this designation to Chartered Chemists. MChemA, Mastership in Chemical Analysis The RSC awards this postgraduate qualification which is the UK statutory qualification for practice as a Public Analyst and it requires candidates to submit a portfolio of suitable experience and to take theory papers and a one-day laboratory practical examination. The qualification GRSC was awarded from 1981 to 1995 for completion of college courses equivalent to a chemistry degree. It replaced the GRIC offered by the Royal Institute of Chemistry, the society is organised around 9 divisions, based on subject areas, and local sections, both in the United Kingdom and overseas. Divisions cover broad areas of chemistry but also many special interest groups for more specific areas. Analytical Division for analytical chemistry and promoting the aims of the Society for Analytical Chemistry. Dalton Division, named after John Dalton, for inorganic chemistry, Faraday Division, named after Michael Faraday, for physical chemistry and promoting the original aims of the Faraday Society. There are 12 subjects groups not attached to a division, there are 35 local sections covering the United Kingdom and Ireland
22.
International Standard Book Number
–
The International Standard Book Number is a unique numeric commercial book identifier. An ISBN is assigned to each edition and variation of a book, for example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, the method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country. The initial ISBN configuration of recognition was generated in 1967 based upon the 9-digit Standard Book Numbering created in 1966, the 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108. Occasionally, a book may appear without a printed ISBN if it is printed privately or the author does not follow the usual ISBN procedure, however, this can be rectified later. Another identifier, the International Standard Serial Number, identifies periodical publications such as magazines, the ISBN configuration of recognition was generated in 1967 in the United Kingdom by David Whitaker and in 1968 in the US by Emery Koltay. The 10-digit ISBN format was developed by the International Organization for Standardization and was published in 1970 as international standard ISO2108, the United Kingdom continued to use the 9-digit SBN code until 1974. The ISO on-line facility only refers back to 1978, an SBN may be converted to an ISBN by prefixing the digit 0. For example, the edition of Mr. J. G. Reeder Returns, published by Hodder in 1965, has SBN340013818 -340 indicating the publisher,01381 their serial number. This can be converted to ISBN 0-340-01381-8, the check digit does not need to be re-calculated, since 1 January 2007, ISBNs have contained 13 digits, a format that is compatible with Bookland European Article Number EAN-13s. An ISBN is assigned to each edition and variation of a book, for example, an ebook, a paperback, and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, a 13-digit ISBN can be separated into its parts, and when this is done it is customary to separate the parts with hyphens or spaces. Separating the parts of a 10-digit ISBN is also done with either hyphens or spaces, figuring out how to correctly separate a given ISBN number is complicated, because most of the parts do not use a fixed number of digits. ISBN issuance is country-specific, in that ISBNs are issued by the ISBN registration agency that is responsible for country or territory regardless of the publication language. Some ISBN registration agencies are based in national libraries or within ministries of culture, in other cases, the ISBN registration service is provided by organisations such as bibliographic data providers that are not government funded. In Canada, ISBNs are issued at no cost with the purpose of encouraging Canadian culture. In the United Kingdom, United States, and some countries, where the service is provided by non-government-funded organisations. Australia, ISBNs are issued by the library services agency Thorpe-Bowker