1.
Computational complexity theory
–
A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are used, such as the amount of communication, the number of gates in a circuit. One of the roles of computational complexity theory is to determine the limits on what computers can. Closely related fields in computer science are analysis of algorithms. More precisely, computational complexity theory tries to classify problems that can or cannot be solved with appropriately restricted resources, a computational problem can be viewed as an infinite collection of instances together with a solution for every instance. The input string for a problem is referred to as a problem instance. In computational complexity theory, a problem refers to the question to be solved. In contrast, an instance of this problem is a rather concrete utterance, for example, consider the problem of primality testing. The instance is a number and the solution is yes if the number is prime, stated another way, the instance is a particular input to the problem, and the solution is the output corresponding to the given input. For this reason, complexity theory addresses computational problems and not particular problem instances, when considering computational problems, a problem instance is a string over an alphabet. Usually, the alphabet is taken to be the binary alphabet, as in a real-world computer, mathematical objects other than bitstrings must be suitably encoded. For example, integers can be represented in binary notation, and graphs can be encoded directly via their adjacency matrices and this can be achieved by ensuring that different representations can be transformed into each other efficiently. Decision problems are one of the objects of study in computational complexity theory. A decision problem is a type of computational problem whose answer is either yes or no. A decision problem can be viewed as a language, where the members of the language are instances whose output is yes. The objective is to decide, with the aid of an algorithm, if the algorithm deciding this problem returns the answer yes, the algorithm is said to accept the input string, otherwise it is said to reject the input. An example of a problem is the following
2.
Decision problem
–
In computability theory and computational complexity theory, a decision problem is a question in some formal system that can be posed as a yes-no question, dependent on the input values. For example, the given two numbers x and y, does x evenly divide y. is a decision problem. The answer can be yes or no, and depends upon the values of x and y. A method for solving a problem, given in the form of an algorithm, is called a decision procedure for that problem. A decision procedure for the problem given two numbers x and y, does x evenly divide y. would give the steps for determining whether x evenly divides y. One such algorithm is long division, taught to school children. If the remainder is zero the answer produced is yes, otherwise it is no, a decision problem which can be solved by an algorithm, such as this example, is called decidable. The field of computational complexity categorizes decidable decision problems by how difficult they are to solve, difficult, in this sense, is described in terms of the computational resources needed by the most efficient algorithm for a certain problem. The field of theory, meanwhile, categorizes undecidable decision problems by Turing degree. A decision problem is any arbitrary yes-or-no question on a set of inputs. Because of this, it is traditional to define the decision problem equivalently as and these inputs can be natural numbers, but may also be values of some other kind, such as strings over the binary alphabet or over some other finite set of symbols. The subset of strings for which the problem returns yes is a formal language, alternatively, using an encoding such as Gödel numberings, any string can be encoded as a natural number, via which a decision problem can be defined as a subset of the natural numbers. A classic example of a decision problem is the set of prime numbers. It is possible to decide whether a given natural number is prime by testing every possible nontrivial factor. Although much more efficient methods of primality testing are known, the existence of any method is enough to establish decidability. A decision problem A is called decidable or effectively solvable if A is a recursive set, a problem is called partially decidable, semidecidable, solvable, or provable if A is a recursively enumerable set. Problems that are not decidable are called undecidable, the halting problem is an important undecidable decision problem, for more examples, see list of undecidable problems. Decision problems can be ordered according to many-one reducibility and related to feasible reductions such as polynomial-time reductions
3.
Turing machine
–
Despite the models simplicity, given any computer algorithm, a Turing machine can be constructed that is capable of simulating that algorithms logic. The machine operates on an infinite memory tape divided into discrete cells, the machine positions its head over a cell and reads the symbol there. The Turing machine was invented in 1936 by Alan Turing, who called it an a-machine, thus, Turing machines prove fundamental limitations on the power of mechanical computation. Turing completeness is the ability for a system of instructions to simulate a Turing machine, a Turing machine is a general example of a CPU that controls all data manipulation done by a computer, with the canonical machine using sequential memory to store data. More specifically, it is a capable of enumerating some arbitrary subset of valid strings of an alphabet. Assuming a black box, the Turing machine cannot know whether it will eventually enumerate any one specific string of the subset with a given program and this is due to the fact that the halting problem is unsolvable, which has major implications for the theoretical limits of computing. The Turing machine is capable of processing an unrestricted grammar, which implies that it is capable of robustly evaluating first-order logic in an infinite number of ways. This is famously demonstrated through lambda calculus, a Turing machine that is able to simulate any other Turing machine is called a universal Turing machine. The thesis states that Turing machines indeed capture the notion of effective methods in logic and mathematics. Studying their abstract properties yields many insights into computer science and complexity theory, at any moment there is one symbol in the machine, it is called the scanned symbol. The machine can alter the scanned symbol, and its behavior is in part determined by that symbol, however, the tape can be moved back and forth through the machine, this being one of the elementary operations of the machine. Any symbol on the tape may therefore eventually have an innings, the Turing machine mathematically models a machine that mechanically operates on a tape. On this tape are symbols, which the machine can read and write, one at a time, in the original article, Turing imagines not a mechanism, but a person whom he calls the computer, who executes these deterministic mechanical rules slavishly. If δ is not defined on the current state and the current tape symbol, Q0 ∈ Q is the initial state F ⊆ Q is the set of final or accepting states. The initial tape contents is said to be accepted by M if it eventually halts in a state from F, Anything that operates according to these specifications is a Turing machine. The 7-tuple for the 3-state busy beaver looks like this, Q = Γ = b =0 Σ = q 0 = A F = δ = see state-table below Initially all tape cells are marked with 0. In the words of van Emde Boas, p.6, The set-theoretical object provides only partial information on how the machine will behave and what its computations will look like. For instance, There will need to be many decisions on what the symbols actually look like, and a failproof way of reading and writing symbols indefinitely
4.
Polynomial
–
In mathematics, a polynomial is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents. An example of a polynomial of a single indeterminate x is x2 − 4x +7, an example in three variables is x3 + 2xyz2 − yz +1. Polynomials appear in a variety of areas of mathematics and science. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in algebra, the word polynomial joins two diverse roots, the Greek poly, meaning many, and the Latin nomen, or name. It was derived from the binomial by replacing the Latin root bi- with the Greek poly-. The word polynomial was first used in the 17th century, the x occurring in a polynomial is commonly called either a variable or an indeterminate. When the polynomial is considered as an expression, x is a symbol which does not have any value. It is thus correct to call it an indeterminate. However, when one considers the function defined by the polynomial, then x represents the argument of the function, many authors use these two words interchangeably. It is a convention to use uppercase letters for the indeterminates. However one may use it over any domain where addition and multiplication are defined, in particular, when a is the indeterminate x, then the image of x by this function is the polynomial P itself. This equality allows writing let P be a polynomial as a shorthand for let P be a polynomial in the indeterminate x. A polynomial is an expression that can be built from constants, the word indeterminate means that x represents no particular value, although any value may be substituted for it. The mapping that associates the result of substitution to the substituted value is a function. This can be expressed concisely by using summation notation, ∑ k =0 n a k x k That is. Each term consists of the product of a number—called the coefficient of the term—and a finite number of indeterminates, because x = x1, the degree of an indeterminate without a written exponent is one. A term and a polynomial with no indeterminates are called, respectively, a constant term, the degree of a constant term and of a nonzero constant polynomial is 0. The degree of the polynomial,0, is generally treated as not defined
5.
Nondeterministic algorithm
–
In computer science, a nondeterministic algorithm is an algorithm that, even for the same input, can exhibit different behaviors on different runs, as opposed to a deterministic algorithm. There are several ways an algorithm may behave differently from run to run, a concurrent algorithm can perform differently on different runs due to a race condition. A probabilistic algorithms behaviors depends on a number generator. An algorithm that solves a problem in polynomial time can run in polynomial time or exponential time depending on the choices it makes during execution. The nondeterministic algorithms are used to find an approximation to a solution. The notion was introduced by Robert W. Floyd, often in computational theory, the term algorithm refers to a deterministic algorithm. A nondeterministic algorithm is different from its more familiar deterministic counterpart in its ability to arrive at outcomes using various routes and this property is captured mathematically in nondeterministic models of computation such as the nondeterministic finite automaton. In some scenarios, all paths are allowed to run simultaneously. In algorithm design, nondeterministic algorithms are used when the problem solved by the algorithm inherently allows multiple outcomes. Crucially, every outcome the nondeterministic algorithm produces is valid, regardless of which choices the algorithm makes while running, in computational complexity theory, nondeterministic algorithms are ones that, at every possible step, can allow for multiple continuations. These algorithms do not arrive at a solution for every possible path, however. The choices can be interpreted as guesses in a search process, a large number of problems can be conceptualized through nondeterministic algorithms, including the most famous unresolved question in computing theory, P vs NP. One way to simulate a nondeterministic algorithm N using a deterministic algorithm D is to treat sets of states of N as states of D and this means that D simultaneously traces all the possible execution paths of N. Another is randomization, which consists of letting all choices be determined by a number generator. The result is called a deterministic algorithm. The problem, given a number n larger than two, determine whether it is prime. A nondeterministic algorithm for this problem is the based on Fermats little theorem, Repeat thirty times. If a n −1 ≠1, return answer composite Return answer probably prime, if this algorithm returns the answer composite then the number is certainly not prime
6.
Non-deterministic Turing machine
–
In theoretical computer science, a Turing machine is a theoretical machine that is used in thought experiments to examine the abilities and limitations of computers. In essence, a Turing machine is imagined to be a computer that reads. It determines what action it should perform next according to its internal state, an example of one of a Turing Machines rules might thus be, If you are in state 2 and you see an A, change it to B and move left. In a deterministic Turing machine, the set of rules prescribes at most one action to be performed for any given situation, by contrast, a non-deterministic Turing machine may have a set of rules that prescribes more than one action for a given situation. For example, an X on the tape in state 3 might make the DTM write a Y on the tape, move the one position to the right. For example, an X on the tape in state 3 might allow the NTM to write a Y, move right, and switch to state 5, or to write an X, move left, and stay in state 3. L is the movement to the left, and R is to the right, the difference with a standard Turing machine is that for those, the transition relation is a function. How does the NTM know which of these actions it should take, there are two ways of looking at it. One is to say that the machine is the luckiest possible guesser, it always picks a transition that eventually leads to an accepting state, the other is to imagine that the machine branches into many copies, each of which follows one of the possible transitions. Whereas a DTM has a single computation path that it follows, If at least one branch of the tree halts with an accept condition, we say that the NTM accepts the input. NTMs can compute the results as DTMs, that is, they are capable of computing the same values. The time complexity of these varies, however, as is discusssed below. NTMs effectively include DTMs as special cases, so it is clear that DTMs are not more powerful. The 3-tape DTMs are easily simulated with a normal single-tape DTM, therefore, the length of an accepting computation of the DTM is, in general, exponential in the length of the shortest accepting computation of the NTM. This is considered to be a property of simulations of NTMs by DTMs, the most famous unresolved question in computer science. The time complexity of NTMs is not the same as for DTMs and it is a common misconception that quantum computers are NTMs. It is believed but has not been proven that the power of computers is incomparable to that of NTMs. That is, problems likely exist that an NTM could efficiently solve that a computer cannot