Wythoff symbol

In geometry, the Wythoff symbol represents a Wythoff construction of a uniform polyhedron or plane tiling, from a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform polyhedra. A Wythoff symbol consists of a vertical bar, it represents one uniform polyhedron or tiling, although the same tiling/polyhedron can have different Wythoff symbols from different symmetry generators. For example, the regular cube can be represented by 3 | 4 2 with Oh symmetry, 2 4 | 2 as a square prism with 2 colors and D4h symmetry, as well as 2 2 2 | with 3 colors and D 2 h symmetry. With a slight extension, Wythoff's symbol can be applied to all uniform polyhedra. However, the construction methods do not lead to all uniform tilings in Euclidean or hyperbolic space. In three dimensions, Wythoff's construction begins by choosing a generator point on the triangle. If the distance of this point from each of the sides is non-zero, the point must be chosen to be an equal distance from each edge.

A perpendicular line is dropped between the generator point and every face that it does not lie on. The three numbers in Wythoff's symbol, p, q and r, represent the corners of the Schwarz triangle used in the construction, which are π / p, π / q and π / r radians respectively; the triangle is represented with the same numbers, written. The vertical bar in the symbol specifies a categorical position of the generator point within the fundamental triangle according to the following: p | q r indicates that the generator lies on the corner p, p q | r indicates that the generator lies on the edge between p and q, p q r | indicates that the generator lies in the interior of the triangle. In this notation the mirrors are labeled by the reflection-order of the opposite vertex; the p, q, r values are listed before the bar. The one impossible symbol | p q r implies the generator point is on all mirrors, only possible if the triangle is degenerate, reduced to a point; this unused symbol is therefore arbitrarily reassigned to represent the case where all mirrors are active, but odd-numbered reflected images are ignored.

The resulting figure has rotational symmetry only. The generator point can either be off each mirror, activated or not; this distinction creates 8 possible forms, neglecting one where the generator point is on all the mirrors. The Wythoff symbol is functionally similar to the more general Coxeter-Dynkin diagram, in which each node represents a mirror and the arcs between them – marked with numbers – the angles between the mirrors. A node is circled. There are seven generator points with each set of p, q, r: There are three special cases: p q | – This is a mixture of p q r | and p q s |, containing only the faces shared by both. | p q r – Snub forms are given by this otherwise unused symbol. | p q r s – A unique snub form for U75 that isn't Wythoff-constructible. There are 4 symmetry classes of reflection on the sphere, three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are listed. Point groups: dihedral symmetry, p = 2, 3, 4 … tetrahedral symmetry octahedral symmetry icosahedral symmetry Euclidean groups: *442 symmetry: 45°-45°-90° triangle *632 symmetry: 30°-60°-90° triangle *333 symmetry: 60°-60°-60° triangleHyperbolic groups: *732 symmetry *832 symmetry *433 symmetry *443 symmetry *444 symmetry *542 symmetry *642 symmetry...

The above symmetry groups only include the integer solutions on the sphere. The list of Schwarz triangles includes rational numbers, determine the full set of solutions of nonconvex uniform polyhedra. In the tilings above, each triangle is a fundamental domain, colored by and odd reflections. Selected tilings created by the Wythoff con

Line segment

In geometry, a line segment is a part of a line, bounded by two distinct end points, contains every point on the line between its endpoints. A closed line segment includes both endpoints. Examples of line segments include the sides of a square. More when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge if they are adjacent vertices, or otherwise a diagonal; when the end points both lie on a curve such as a circle, a line segment is called a chord. If V is a vector space over R or C, L is a subset of V L is a line segment if L can be parameterized as L = for some vectors u, v ∈ V, in which case the vectors u and u + v are called the end points of L. Sometimes one needs to distinguish between "open" and "closed" line segments. One defines a closed line segment as above, an open line segment as a subset L that can be parametrized as L = for some vectors u, v ∈ V. Equivalently, a line segment is the convex hull of two points. Thus, the line segment can be expressed as a convex combination of the segment's two end points.

In geometry, it is sometimes defined that a point B is between two other points A and C, if the distance AB added to the distance BC is equal to the distance AC. Thus in R 2 the line segment with endpoints A = and C = is the following collection of points:. A line segment is a non-empty set. If V is a topological vector space a closed line segment is a closed set in V. However, an open line segment is an open set in V if and only if V is one-dimensional. More than above, the concept of a line segment can be defined in an ordered geometry. A pair of line segments can be any one of the following: intersecting, skew, or none of these; the last possibility is a way that line segments differ from lines: if two nonparallel lines are in the same Euclidean plane they must cross each other, but that need not be true of segments. In an axiomatic treatment of geometry, the notion of betweenness is either assumed to satisfy a certain number of axioms, or else be defined in terms of an isometry of a line.

Segments play an important role in other theories. For example, a set is convex if the segment that joins any two points of the set is contained in the set; this is important because it transforms some of the analysis of convex sets to the analysis of a line segment. The Segment Addition Postulate can be used to add congruent segment or segments with equal lengths and substitute other segments into another statement to make segments congruent. A line segment can be viewed as a degenerate case of an ellipse in which the semiminor axis goes to zero, the foci go to the endpoints, the eccentricity goes to one. A standard definition of an ellipse is the set of points for which the sum of a point's distances to two foci is a constant. A complete orbit of this ellipse traverses the line segment twice; as a degenerate orbit this is a radial elliptic trajectory. In addition to appearing as the edges and diagonals of polygons and polyhedra, line segments appear in numerous other locations relative to other geometric shapes.

Some frequently considered segments in a triangle include the three altitudes, the three medians, the perpendicular bisectors of the sides, the internal angle bisectors. In each case there are various equalities relating these segment lengths to others as well as various inequalities. Other segment

Vertex (geometry)

In geometry, a vertex is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices; the vertex of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect, or any appropriate combination of rays and lines that result in two straight "sides" meeting at one place. A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object. In a polygon, a vertex is called "convex" if the internal angle of the polygon, that is, the angle formed by the two edges at the vertex, with the polygon inside the angle, is less than π radians. More a vertex of a polyhedron or polytope is convex if the intersection of the polyhedron or polytope with a sufficiently small sphere centered at the vertex is convex, concave otherwise. Polytope vertices are related to vertices of graphs, in that the 1-skeleton of a polytope is a graph, the vertices of which correspond to the vertices of the polytope, in that a graph can be viewed as a 1-dimensional simplicial complex the vertices of which are the graph's vertices.

However, in graph theory, vertices may have fewer than two incident edges, not allowed for geometric vertices. There is a connection between geometric vertices and the vertices of a curve, its points of extreme curvature: in some sense the vertices of a polygon are points of infinite curvature, if a polygon is approximated by a smooth curve there will be a point of extreme curvature near each polygon vertex. However, a smooth curve approximation to a polygon will have additional vertices, at the points where its curvature is minimal. A vertex of a plane tiling or tessellation is a point. More a tessellation can be viewed as a kind of topological cell complex, as can the faces of a polyhedron or polytope. A polygon vertex xi of a simple polygon P is a principal polygon vertex if the diagonal intersects the boundary of P only at x and x. There are two types of principal vertices: mouths. A principal vertex xi of a simple polygon P is called an ear if the diagonal that bridges xi lies in P. According to the two ears theorem, every simple polygon has at least two ears.

A principal vertex xi of a simple polygon P is called a mouth if the diagonal lies outside the boundary of P. Any convex polyhedron's surface has Euler characteristic V − E + F = 2, where V is the number of vertices, E is the number of edges, F is the number of faces; this equation is known as Euler's polyhedron formula. Thus the number of vertices is 2 more than the excess of the number of edges over the number of faces. For example, a cube has 12 edges and 6 faces, hence 8 vertices. In computer graphics, objects are represented as triangulated polyhedra in which the object vertices are associated not only with three spatial coordinates but with other graphical information necessary to render the object such as colors, reflectance properties and surface normal. Weisstein, Eric W. "Polygon Vertex". MathWorld. Weisstein, Eric W. "Polyhedron Vertex". MathWorld. Weisstein, Eric W. "Principal Vertex". MathWorld

Dihedral group

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, they play an important role in group theory and chemistry; the notation for the dihedral group differs in abstract algebra. In geometry, Dn or Dihn refers to the symmetries of a group of order 2n. In abstract algebra, D2n refers to this same dihedral group; the geometric convention is used in this article. A regular polygon with n sides has 2 n different symmetries: n rotational symmetries and n reflection symmetries. We take n ≥ 3 here; the associated rotations and reflections make up the dihedral group D n. If n is odd, each axis of symmetry connects the midpoint of one side to the opposite vertex. If n is there are n/2 axes of symmetry connecting the midpoints of opposite sides and n / 2 axes of symmetry connecting opposite vertices. In either case, there are 2 n elements in the symmetry group. Reflecting in one axis of symmetry followed by reflecting in another axis of symmetry produces a rotation through twice the angle between the axes.

The following picture shows the effect of the sixteen elements of D 8 on a stop sign: The first row shows the effect of the eight rotations, the second row shows the effect of the eight reflections, in each case acting on the stop sign with the orientation as shown at the top left. As with any geometric object, the composition of two symmetries of a regular polygon is again a symmetry of this object. With composition of symmetries to produce another as the binary operation, this gives the symmetries of a polygon the algebraic structure of a finite group; the following Cayley table shows the effect of composition in the group D3. R0 denotes the identity. For example, s2s1 = r1, because the reflection s1 followed by the reflection s2 results in a rotation of 120°; the order of elements denoting the composition is right to left, reflecting the convention that the element acts on the expression to its right. The composition operation is not commutative. In general, the group Dn has elements r0, …, rn−1 and s0, …, sn−1, with composition given by the following formulae: r i r j = r i + j, r i s j = s i + j, s i r j = s i − j, s i s j = r i − j.

In all cases and subtraction of subscripts are to be performed using modular arithmetic with modulus n. If we center the regular polygon at the origin elements of the dihedral group act as linear transformations of the plane; this lets us represent elements of Dn with composition being matrix multiplication. This is an example of a group representation. For example, the elements of the group D4 can be represented by the following eight matrices: r 0 =, r 1 =, r 2 =, r 3 =, s 0 =, s 1 =, s 2 =

Uniform 4-polytope

In geometry, a uniform 4-polytope is a 4-polytope, vertex-transitive and whose cells are uniform polyhedra, faces are regular polygons. 47 non-prismatic convex uniform 4-polytopes, one finite set of convex prismatic forms, two infinite sets of convex prismatic forms have been described. There are an unknown number of non-convex star forms. Convex Regular polytopes: 1852: Ludwig Schläfli proved in his manuscript Theorie der vielfachen Kontinuität that there are 6 regular polytopes in 4 dimensions and only 3 in 5 or more dimensions. Regular star 4-polytopes 1852: Ludwig Schläfli found 4 of the 10 regular star 4-polytopes, discounting 6 with cells or vertex figures and. 1883: Edmund Hess completed the list of 10 of the nonconvex regular 4-polytopes, in his book Einleitung in die Lehre von der Kugelteilung mit besonderer Berücksichtigung ihrer Anwendung auf die Theorie der Gleichflächigen und der gleicheckigen Polyeder. Convex semiregular polytopes: 1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular cells in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions.

1910: Alicia Boole Stott, in her publication Geometrical deduction of semiregular from regular polytopes and space fillings, expanded the definition by allowing Archimedean solid and prism cells. This construction enumerated 45 semiregular 4-polytopes. 1911: Pieter Hendrik Schoute published Analytic treatment of the polytopes derived from the regular polytopes, followed Boole-Stott's notations, enumerating the convex uniform polytopes by symmetry based on 5-cell, 8-cell/16-cell, 24-cell. 1912: E. L. Elte independently expanded on Gosset's list with the publication The Semiregular Polytopes of the Hyperspaces, polytopes with one or two types of semiregular facets. Convex uniform polytopes: 1940: The search was expanded systematically by H. S. M. Coxeter in his publication Regular and Semi-Regular Polytopes. Convex uniform 4-polytopes: 1965: The complete list of convex forms was enumerated by John Horton Conway and Michael Guy, in their publication Four-Dimensional Archimedean Polytopes, established by computer analysis, adding only one non-Wythoffian convex 4-polytope, the grand antiprism.

1966 Norman Johnson completes his Ph. D. dissertation The Theory of Uniform Polytopes and Honeycombs under advisor Coxeter, completes the basic theory of uniform polytopes for dimensions 4 and higher. 1986 Coxeter published a paper Regular and Semi-Regular Polytopes II which included analysis of the unique snub 24-cell structure, the symmetry of the anomalous grand antiprism. 1998-2000: The 4-polytopes were systematically named by Norman Johnson, given by George Olshevsky's online indexed enumeration. Johnson named the 4-polytopes as polychora, like polyhedra for 3-polytopes, from the Greek roots poly and choros; the names of the uniform polychora started with the 6 regular polychora with prefixes based on rings in the Coxeter diagrams. 2004: A proof that the Conway-Guy set is complete was published by Marco Möller in his dissertation, Vierdimensionale Archimedische Polytope. Möller reproduced Johnson's naming system in his listing. 2008: The Symmetries of Things was published by John H. Conway contains the first print-published listing of the convex uniform 4-polytopes and higher dimensions by coxeter group family, with general vertex figure diagrams for each ringed Coxeter diagram permutation, grand antiprism, duoprisms which he called proprisms for product prisms.

He used his own ijk-ambo naming scheme for the indexed ring permutations beyond truncation and bitruncation, with all of Johnson's names were included in the book index. Nonregular uniform star 4-polytopes: 2000-2005: In a collaborative search, up to 2005 a total of 1845 uniform 4-polytopes had been identified by Jonathan Bowers and George Olshevsky. Regular 4-polytopes are a subset of the uniform 4-polytopes. Regular 4-polytopes can be expressed with Schläfli symbol have cells of type, faces of type, edge figures, vertex figures; the existence of a regular 4-polytope is constrained by the existence of the regular polyhedra which becomes cells, which becomes the vertex figure. Existence as a finite 4-polytope is dependent upon an inequality: sin sin > cos The 16 regular 4-polytopes, with the property that all cells, faces and vertices are congruent: 6 regular convex 4-polytopes: 5-cell, 8-cell, 16-cell, 24-cell, 120-cell, 600-cell. 10 regular star 4-polytopes:, and. There are 5 fundamental mirror symmetry point group families in 4-dimensions: A4 =, B4 =, D4 =, F4 =, H4 =.

There are 3 prismatic groups A3A1 =, B3A1 =, H3A1 =, duoprismatic groups: I2×I2 =

Dihedral symmetry in three dimensions

In geometry, dihedral symmetry in three dimensions is one of three infinite sequences of point groups in three dimensions which have a symmetry group that as abstract group is a dihedral group Dihn. There are 3 types of dihedral symmetry in three dimensions, each shown below in 3 notations: Schönflies notation, Coxeter notation, orbifold notation. Chiral Dn, +, of order 2n – dihedral symmetry or para-n-gonal group Achiral Dnh, of order 4n – prismatic symmetry or full ortho-n-gonal group Dnd, of order 4n – antiprismatic symmetry or full gyro-n-gonal group For a given n, all three have n-fold rotational symmetry about one axis, 2-fold about a perpendicular axis, hence about n of those. For n = ∞ they correspond to three frieze groups. Schönflies notation is used, with Coxeter notation in brackets, orbifold notation in parentheses; the term horizontal is used with respect to a vertical axis of rotation. In 2D the symmetry group Dn includes reflections in lines; when the 2D plane is embedded horizontally in a 3D space, such a reflection can either be viewed as the restriction to that plane of a reflection in a vertical plane, or as the restriction to the plane of a rotation about the reflection line, by 180°.

In 3D the two operations are distinguished: the group Dn contains rotations only, not reflections. The other group is pyramidal symmetry Cnv of the same order. With reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis we have Dnh. Dnd, has vertical mirror planes between the horizontal rotation axes, not through them; as a result the vertical axis is a 2n-fold rotoreflection axis. Dnh is the symmetry group for a regular n-sided prisms and for a regular n-sided bipyramid. Dnd is the symmetry group for a regular n-sided antiprism, for a regular n-sided trapezohedron. Dn is the symmetry group of a rotated prism. N = 1 is not included because the three symmetries are equal to other ones: D1 and C2: group of order 2 with a single 180° rotation D1h and C2v: group of order 4 with a reflection in a plane and a 180° rotation through a line in that plane D1d and C2h: group of order 4 with a reflection in a plane and a 180° rotation through a line perpendicular to that planeFor n = 2 there is not one main axes and two additional axes, but there are three equivalent ones.

D2 +, of order 4 is one of the three symmetry group types with the Klein four-group as abstract group. It has three perpendicular 2-fold rotation axes, it is the symmetry group of a cuboid with an S written on two opposite faces, in the same orientation. D2h, of order 8 is the symmetry group of a cuboid D2d, of order 8 is the symmetry group of e.g.: a square cuboid with a diagonal drawn on one square face, a perpendicular diagonal on the other one a regular tetrahedron scaled in the direction of a line connecting the midpoints of two opposite edges. For Dnh, order 4n Cnh, order 2n Cnv, order 2n Dn, +, order 2nFor Dnd, order 4n S2n, order 2n Cnv, order 2n Dn, +, order 2nDnd is subgroup of D2nh. Dnh,: D5h,: D4d,: D5d,: D17d,: List of spherical symmetry groups Point groups in three dimensions Cyclic symmetry in three dimensions Coxeter, H. S. M. and Moser, W. O. J.. Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9. CS1 maint: Multiple names: authors list N.

W. Johnson: Geometries and Transformations, ISBN 978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.5 Spherical Coxeter groups Conway, John Horton. "The Orbifold Notation for Two-Dimensional Groups", Structural Chemistry, Springer Netherlands, 13: 247–257, doi:10.1023/A:1015851621002 Graphic overview of the 32 crystallographic point groups – form the first parts of the 7 infinite series and 5 of the 7 separate 3D point groups

Dual polyhedron

In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all are geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. Duality preserves the symmetries of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a symmetric class. Thus, the regular polyhedra – the Platonic solids and Kepler–Poinsot polyhedra – form dual pairs, where the regular tetrahedron is self-dual; the dual of an isogonal polyhedron, having equivalent vertices, is one, isohedral, having equivalent faces. The dual of an isotoxal polyhedron is isotoxal. Duality is related to reciprocity or polarity, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron.

There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality; the duality of polyhedra is defined in terms of polar reciprocation about a concentric sphere. Here, each vertex is associated with a face plane so that the ray from the center to the vertex is perpendicular to the plane, the product of the distances from the center to each is equal to the square of the radius. In coordinates, for reciprocation about the sphere x 2 + y 2 + z 2 = r 2, the vertex is associated with the plane x 0 x + y 0 y + z 0 z = r 2; the vertices of the dual are the poles reciprocal to the face planes of the original, the faces of the dual lie in the polars reciprocal to the vertices of the original. Any two adjacent vertices define an edge, these will reciprocate to two adjacent faces which intersect to define an edge of the dual; this dual pair of edges are always orthogonal to each other. If r 0 is the radius of the sphere, r 1 and r 2 the distances from its centre to the pole and its polar, then: r 1.

R 2 = r 0 2 For the more symmetrical polyhedra having an obvious centroid, it is common to make the polyhedron and sphere concentric, as in the Dorman Luke construction described below. However, it is possible to reciprocate a polyhedron about any sphere, the resulting form of the dual will depend on the size and position of the sphere; the choice of center for the sphere is sufficient to define the dual up to similarity. If multiple symmetry axes are present, they will intersect at a single point, this is taken to be the centroid. Failing that, a circumscribed sphere, inscribed sphere, or midsphere is used. If a polyhedron in Euclidean space has an element passing through the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required'plane at infinity'; some theorists prefer to say that there is no dual. Meanwhile, Wenninger found a way to represent these infinite duals, in a manner suitable for making models.

The concept of duality here is related to the duality in projective geometry, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra, but for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, Grünbaum argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron. Any convex polyhedron can be distorted into a canonical form, in which a unit midsphere exists tangent to every edge, such that the average position of the points of tangency is the center of the sphere; this form is unique up to congruences. If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points and so must be canonical, it is the canonical dual, the two together form a canonical dual pair.

When a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of polyhedra are abstractly dual; the vertices and edges of a convex polyhedron form a graph, embedded on a topological sphere, the surface of the polyhedron. The same graph can be projected to form